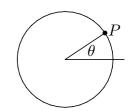
1º compitino di Fisica 1 (Matematici)

10 Novembre 2006

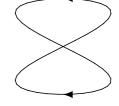
- 1. Un proiettile viene sparato verso l'alto dal punto x=y=z=0 con velocità \vec{v}_0 con componenti nel piano y=0 ($v_{0y}=0$) e ritorna sul piano <u>orizzontale</u> z=0 in un punto con ascissa positiva, con velocità $\vec{v}=(v_0/\sqrt{3},?,?)$. (v_0 è noto, \vec{v}_0 no).
- 1a) Determinare le coordinate x e y del punto di arrivo del proiettile sul piano z=0 e le componenti v_y e v_z della velocità in detto punto.
- 1b) Determinare la massima altezza \overline{z} raggiunta dal proiettile, il tempo \overline{t} impiegato a raggiungerlo e la velocità \vec{v}' in detto punto.
- **2.** Un punto materiale P di massa m, vincolato a muoversi su una retta orizzontale (asse x), è soggetto alla forza

$$F_x = \begin{cases} -kx, & (k > 0) & \text{per } -a \le x \le a \\ 0 & \text{per } |x| > a \end{cases}.$$

- 2a) Il punto materiale parte da x = 0 con velocità $v_0 = 2a\omega$ ($\omega = \sqrt{k/m}$). Dire se P supera il punto x = a: in caso affermativo determinare la velocità di P per x > a, altrimenti determinare l'ampiezza delle oscillazioni.
- **3.** Un punto materiale P di massa m si muove su una circonferenza di raggio R soggetto alla forza tangenziale $F(\theta) = -kR\,\theta, \quad k>0$ (molla a spirale).



- 3a) Se il punto P parte dalla posizione $\theta=\pi/2$ con velocità nulla, determinare l'accelerazione vettoriale \vec{a} quando passa per il punto $\theta=0$.
- **4.** La legge oraria di un punto materiale P di massa m è $\vec{r}(t) = \vec{r}_0 + \vec{v}_0 t$, $\vec{r}(t) \equiv \overline{OP(t)}$.
- 4a) Calcolare il momento della quantità di moto \vec{L}_O e utilizzare il risultato per calcolare la minima distanza d del punto P dal polo O.
- 5. Un punto materiale P di massa m in un opportuno campo di forza descrive la traiettoria riportata nella figura accanto.



5a) Dire se il campo di forza può essere un opportuno campo centrale.

Soluzioni del compitino di Fisica 1 del 10 Novembre 2006

1.

1a) Preso l'asse z verso l'alto:

$$v_y = 0, \ v_z = -\sqrt{\frac{2}{3}} v_0 = -v_{0z}; \quad x = \frac{2v_{0x}v_{0z}}{g} = \frac{2\sqrt{2}v_0^2}{3g}, \quad y = 0.$$

1b)
$$\overline{z} = v_{0z}^2/2g = v_0^2/3g$$
; $\overline{t} = v_{0z}/g = \sqrt{\frac{2}{3}} \frac{v_0}{g}$; $\vec{v}' = (v_{0x}, 0, 0) = (v_0/\sqrt{3}, 0, 0)$.

2.

2a) Per $|x| \le a$ $x(t) = 2a \sec \omega t$, $\dot{x}(t) = 2a\omega \cos \omega t$; raggiunge il punto x = a quando $\sec \omega t = 1/2$, quindi con velocità $v = 2a\omega \sqrt{3/4} = a\omega \sqrt{3}$ che mantiene per x > a.

3.

3a) $\theta(t) = (\pi/2)\cos\omega t$ ($\omega = \sqrt{k/m}$). Nell punto $\theta = 0$ L'accelerazione tangenziale è nulla (F(0) = 0), e la velocità è $v = R\dot{\theta}(0) = R\omega\pi/2$, quindi $\vec{a} = (v^2/R)\hat{n} = (R\omega^2\pi^2/4)\hat{n}$ (\hat{n} versore verso il centro).

4.

4a) \vec{L}_O è costante, quindi $\vec{L}_O = m\vec{r}_0 \wedge \vec{v}_0$, $|\vec{L}_O| = mdv_0 \Rightarrow d = |\vec{r}_0 \wedge \hat{v}_0|$.

5.

5a) No: comunque si prenda il polo sul piano della traiettoria, il momento della quantità di moto non resta costante dato che il moto si svolge parte in senso orario e parte in senso antiorario.