

L'Universo quattro secoli dopo Galileo Nucleare Pisa, 4-8 Maggio 2009 LIII Congresso SAlt

StroFIs/ca

¹¹B(p, a₀)⁸Be S(E)-factor through the Improved results on extraction of **Trojan Horse Method**

LNS-INFN, Catania Livio Lamia

Light Elements in Astrophysics: Lithium, Beryllium, Boron (I)

Nucleare

<u>strofis/</u>

<u>Observational status</u>: Depletion in Open Clusters for stars with 5500<Teff(K)<7500.
<u>Burning (p,a)</u> channel as the main contribution to their destruction at T₆=2.5 (Li), T₆=4 (Be), T₆=5 (B)
<u>Dip di Li & Be</u>: the depth of the dip reflects the *nuclear fate* in the nuclear destruction zone (NDZ).
<u>Li-Be & Be-B correlation</u> as signature of "rotation-induced" slow-mixing processes.

Be reaction	b) 10^2	1 0 0.2 0.4 0.6 0.8 1 Ecu(MeV)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
From Stars to the laboratory: direct measurements of $^{11}B(p,\alpha)^{8}I$	\checkmark By considering the typical temperatures of some 10 ⁶ K at which burning (p,a) reactions typically occur for boron isotopes in stellar environments, the Gamow peak is at about	$E_0 = 1.22(Z^2_x Z^2_y \mu T_6^2)^{1/3} \text{ keV} \approx 10 \text{ keV}$	Only extrapolations are possive o w- energies direct data be screening and Centom penetral ty effect

an Horse Method Mucleare ticles two-body cross section x(A,C)c at i-free (QF) contribution of a suitable three es well above the Coulomb barrier.	$\frac{d^{3}\sigma}{dE_{c}d\Omega_{c}d\Omega_{C}} \propto KF \left \Phi(p_{S}) \right ^{2} \left(\frac{d\sigma}{d\Omega} \right)^{N}$	suppression and electron screening effects; (II) validity test, introduction of	penetrability function and normalization to direct data are needed!!!	estrapolation for A(x,c)C in the energy window relevant for astrophysics
The Indirect Methods: Troj The THM allows to extract a charged part astrophysical energies by selecting the quasi body reaction a(A,Cc)s performed at energie	C Break-up x C Break-up x C C Break-up x C C Break-up x C C C Break-up x C C C Break-up x C C C Break-up x C C C C C C C C C C C C C C C C C C C	A Virtual two-body reaction	The explored energy region E_{cm} goes from $0 < E_{cm} < 1$ MeV by using only one value for the energy beam!!!	

through ${}^{2}H({}^{11}B,\alpha_{0}{}^{8}Be)n$ by means of the THM Indirect study of the ${}^{11}B(p,\alpha_0)^8Be$ reaction

<u>strofish</u>

Selan

Study of the ¹¹B(p,α)⁸Be reaction (Q=8.59 MeV) through ²H(¹¹B,α⁸Be)n 3-dody reaction (Q=6.36 MeV, E_{coul}= 1.3 MeV);
 The deuteron is used like Trojan Horse nucleus. The momentum distribution of intercluster motion

inside the deuteron is known from indipendent

experiments.

The experiment was performed at LNS (Tandem & Camera2000) in two different runs on December 2002 and April 2007;
 E_{beam}(¹¹B)=27 MeV & I_{beam}(¹¹B)=2-5 nA;
 Target thickness CD₂ ~190 µg/cm²;
 Displacement of the detectors around the whole *QF*-angular range.

