Astrofisica nell'infrarosso: The Dusty Universe

Leslie Hunt

INAF - Osservatorio Astrofisico di Arcetri

Dust is everywhere stars form

Spitzer Mountains of Creation

IRAC+MIPS image of Eagle Nebula (Carina) HST Pillars of Creation

Spitzer merger IRAC composite image of interacting galaxies N2207+IC2163

Overriding themes

- ✔ Where we were before **Spitzer**: **IRAS** discoveries and what we already learned with **ISO**
- ✔ **Star-forming galaxies**, with a view to AGN/starburst diagnostics
- ✔ Compare **star formation at different metallicities**, since primordial galaxies start out chemically unevolved
- ✔ Looking to the future with **Herschel** and **JWST**

IRAS identified a new IR-luminous galaxy population

Luminous IR galaxies and Ultraluminous IRGs

SEDs (GRASIL, Silva et al. 1998) shown as a function of increasing dust opacities

Anatomy of a LIRG: prototypical starburst M82

A prototypical ULIRG? Arp220

As in M82, optical image shows dust patches

- ◆ Two merged spiral galaxies, 95% of light in IR powered by the interaction
- ◆ Giant SuperStar Clusters in core are the primary heating source of dust (HST), together with two SuperMassive Black Holes in the parent galaxies' cores (Chandra)

Core ~1kpc in diameter contains 200 star clusters and $M(H2) = 2 x$ 10⁸ Msun, as much molecular gas as the entire MW

 \sum gas ~ 6x10⁴ **Msun/pc²(20 x M82)**

 Σ SFR ~ 10³ **Msun/kpc2 (30 x)**

ULIRGs: the power of interaction

Mostly obscured AGN identified with Chandra (e.g., Gerrsen et al. 2004) or with VLA. **But with or without AGN, IR powered by the**

Mrk273

High-redshift ULIRG counterparts: SMGs

Submillimeter Galaxies (SMGs) discovered ~10 years ago through a strong 850 µm continuum detected with array cameras on sub-mm/mm telescopes (Smail et al. 1997) [c.f., LeonardoTesti's talk].

Very dusty very luminous galaxies at z~2-3, with cooler dust than ULIRGs (Pope et al. 2006), but similarly high (or higher) SFRs, ~> 500-1000 Msun/yr.

More gas rich than local ULIRGs (~40% by mass vs. ~10%, Tacconi et al. 2006)

R band K band

Positions need to be confirmed with VLA interferometry or submm interferometry (e.g., SMA).

SMGs tend to be optical (BVR) band dropouts, but visible at $2\mu m$ (K) band) (Iono et al. 2007, Younger et al. 2008)

SMGs very compact, dense, and dusty

ULIRGs and SMGs: Elliptical galaxies in formation

Number densities of IR galaxies and interactions increase with z at least until $z \sim 1$ (Elbaz et al. 2002, Le Floc'h et al. 2005).

ULIRGs as a dust-enshrouded phase of quasar formation was proposed by Sanders et al. (1988), but ULIRGs and SMGs are the likely progenitors of intermediate-luminosity elliptical galaxies (Genzel et al. 2001).

Cosmic IR Background: Dust heated at high redshift by star formation

How is all this dust produced?

Silicate-type and carbonaceous grains form in the molecular outflows of **Asymptotic Giant Branch stars** (Gehrz 1989, Whittet 1992, Habing et al. 1994, Busso et al. 1999)

Dust grains are also thought to form in **Type II supernovae** (Dwek & Scalo 1980,Todini & Ferrara 2001)

particles: Courtesy of E.K. Jessberger, Institut für Planetologie, Münster, Germany, and Don Brownlee, University of Washington, Seattle

But if dust is observed at redshifts >~ 6, there has been insufficient time (~1 Gyr) for onset of the AGB phase!

Supernova origin for high-redshift dust

Metal-poor dust in the local universe

IZw18 12+logO/H=7.18 (1/30-1/50 Zsun)

et al. 2005, Wu et al. 2007). **Consistent with Type II SN production!**

Most metal-deficient

star-forming dwarfs

universe: >10²-10³

Msun in dust grains,

10⁸-10⁹ Lsun (Hunt

in the local

0.025 NGC7714 0.020 SBS0335-052 IZw18 0.015 $\begin{array}{c}\n 0.015 \\
\hline\n 2 \\
\hline\n 6\n \end{array}$ 0.005 0.000 15 20 25 30 35 10 5 Rest Wavelength(μ m)

SBS0335-052 12+logO/H=7.23 (1/24-1/40 Zsun)

Wu et al. 2007 **Houck et al. 2004**

Not just continuum: IR spectral lines and features

Mid- and far-infrared fine structure lines

 $(SiII]$ 35 µm, $[OI]$ 63µm, $[OII]$ 158 µm, $[NeIII]$ 15.6µm, $[SIII]$ 18, 33 µm, $[OIII]$ 52, $88 \mu m$, [NII] 122, 205 μm) dominant cooling lines for neutral ISM gas in Photon Dominated Regions, and strong coolants for HII regions, respectively.

Rotational transitions of H_2 **[S(0) 28** μ **m, S(1) 17** μ **m, S(2) 12** μ **m, S(3)** $9.7 \mu m$, S(4) 8 μm , S(5) 6.9 μm , S(6) 6.1 μm , S(7) 5.5 μm]

IR spectral lines: [CII] with ISO/LWS

[CII] 158 μ m line is > 1500 x more intense than ${}^{12}CO(1-0)$ in normal spirals, and > 6000 x more intense in starburst nuclei and Galactic starburst regions (Crawford etal. 1985, Stacey et al. 1991): ISO Normal Galaxy Key Project (Helou et al. 1996)

IR spectral lines: [SiII] and H² with Spitzer/IRS

[**SiII] 35m line** roughly half as intense (relative to FIR) as [CII], but still an important neutral ISM coolant, even at low metallicity.

IR spectral lines: H² with Spitzer/IRS

Rotational transitions of H₂ (5-28 µm) trace warm gas with T ranging from 100 to ~1000K; one of the important coolants of warm molecular gas.

Better tracers of (warm) molecular mass than the NIR roto-vibrational lines: the latter need higher excitation (T>1000K) and because of higher critical densities, may not be thermalized, but rather excited by fluorescence.

IR spectral lines: [NeII], [NeIII] , [SIII], [SIV]

Because of different ionization potentials (41 eV vs. 23.3 eV, 34.8 eV vs. 23.3 eV), [NeIII] 15.55µm/[NeII] 12.8µm and [SIV] 10.5µm /[SIII] 18.7, 33 µm trace excitation and hardness of the InterStellar Radiation Field (ISRF), but ratios "saturate" at low metallicity!

> SINGS **galaxies**+**AGN**, **metalpoor compact dwarfs** (Dale et al. 2009, Hunt et al. 2009)

[SIVI]/[SIII]

IR spectral lines: [OIV], [NeV]

With ionization potentials of **54.9 eV ([OIV])** and **97 eV ([NeV])**, these lines trace *hard ionizing radiation.*

IRAS revealed a new dust component: Aromatics

As 12/25 µm ratio in star-forming galaxies increases (quiescent "cirrus", stochastically heated Aromatic Features in Emission), they get cooler at 60/100 m, with a...

ISO SWS spectra of star-forming regions and AGN

Spitzer/IRS spectra of PAHs

PAHs comprise about 10% of the total IR luminosity

Mid-infrared diagnostics for ULIRG AGN (1)

Ubiquity of PAHs in starbursts (except for metal-poor ones) and the lack of them around an AGN has led to a plethora of AGN diagnostics.

Combine high-excitation (coronal) line [OIV] with low-excitation one, e.g., [NeII] or [SiII], and compare to a strong PAH feature (e.g., 7.7m)

Mid-infrared diagnostics for ULIRG AGN (2)

Spitzer and a census of the high-redshift universe

Because PAHs redshift into Spitzer/MIPS 24um for z~2, deep fields (e.g., Boötes, GOODS, COSMOS, ...) observed in optical and at 24um *reveal new IR galaxy populations:*

 $F(R)/F(24\mu m) \ll 1000 (R > 24, F(24) \sim 1 mJy)$ 24um flux limit to find ULIRGs OR red optical/NIR (R-K>~5) for AGN

SMGs, may represent the AGNgrowth phase, progenitors of massive present-day galaxies

The redshift zoo

Boötes field observed in optical and at $24\mu m$ (>1 mJy) and $70\mu m$ **(>30mJy)** with Spitzer/MIPS, with relaxed F(R)/F(24µm) criterion (slightly less red):

ULIRGs with $z \le -1.3$. PAHs 4-7x10¹¹ Lsun (Brand et al. 2008)

SWIRE field selected **via stellar photospheric bump** (Spitzer/IRAC) at 1.6 μ m, 24 μ m >0.5mJy with Spitzer/MIPS:

ULIRGs with $z \sim 1.7$, with TIR $\sim 10^{13-14}$ Lsun (Farrah et al. 2008)

BUT with weak silicate absorption, more similar to local LIRGs (10¹¹ Lsun) than ULIRGs (inevitably associated with strong PAHs and strong silicate absorption)

Dust obscuration, luminosity, and redshift

Reddy et al. (2006) uses MIPS 24 µm in GOODS fields for galaxies z ~2 to estimate restframe 5-8.5um luminosities and thus LIR (MIR/LIR constant to within a factor of 2 or 3).

Obscuration increases with luminosity but for a given bolometric luminosity is a factor of 8–10 reduced at $z \sim 2$ than at the present epoch (Reddy et al. 2006, see also Adelberger & Steidel 2000)

Although a larger fraction of star formation at high redshifts occurs in dustier systems, dust obscuration for a given Lbol has less of an impact on observations of high-redshift galaxies than expected from present-day extrapolation.

Future prospects with Herschel

HERMES (Guaranteed Time): **PACS** and **SPIRE** continuum survey (PI Seb Oliver, 900 hrs)

Redshift-luminosity space probed in a 4-tier wedding cake survey. Yellow: 0.25 square degrees, 1.7 mJy 5σ threshold at 120 μ m (PACS); red, blue, and magenta: 0.9, 9, and 90 square degrees, with 5σ thresholds of 10, 31, and 100 mJy at 250 μm (**SPIRE**). The **PACS** and first **SPIRE** surveys would be confusion-limited.

ISO could observe 10¹¹ Lsun to z~1; **Spitzer** could observe 10¹¹ Lsun to z~2.

Herschel will observe 10¹¹ Lsun to z~3! to better constrain the bolometric luminosity of galaxies, and distentangle AGN and starburst components.

Mid-infrared constraints on galaxy formation epoch

53 i(775W) dropouts in GOODS fields; **mass locked up in stars at z~6** implies higher SFR prior to this epoch.

Spitzer/IRAC's sensitivity at 3.6 and 4.5µm enables detection of galaxies at z~6-7.

Looking toward the future with JWST

Dust obscures the most powerful starbursts...

"Sure it's beautiful, but I can't help thinking about all that interstellar dust out there."

Thank you...