Orbit determination with the 2-body integrals

Giovanni Federico Gronchi

Dipartimento di Matematica, Università di Pisa

6 Maggio 2009

Orbit determination with the 2-body integrals

joint work with

Linda Dimare (Università di Roma I)

Andrea Milani (Università di Pisa)

The discovery of Ceres

On January 1, 1801 G. Piazzi discovered Ceres, the first asteroid.

He could follow up the asteroid in the sky for about 1 month, collecting 21 observations forming an arc of ~ 3 degrees.

Giuseppe Piazzi (1746-1826)

- Problem: find in which part of the sky we have to observe to recover Ceres when it is visible again;
- Orbit determination: given the observations of a Solar system body, compute its Keplerian orbit.

Orbit determination methods

C. F. Gauss proposed a method allowing the recover of Ceres in 1802: he determined an orbit with the observations made by Piazzi. Given at least three observations of a Solar system body, his method consists of two steps:

- determination of a preliminary orbit;
- application of the least squares method (also known as differential corrections), using the preliminary orbit as a starting guess.

There are two famous classical methods to define a preliminary orbit from three observations: Laplace's method and Gauss' method. These techniques are still effective today, if the available observations fulfill some requirements.

Modern observations of a Solar system body

Attributables

Given a short arc of observations (*right ascension* and *declination*)

$$(\alpha_i, \delta_i) \in S^1 \times (-\pi/2, \pi/2)$$
 at times $t_i, i = 1 \dots m$,

of a Solar system body we can compute an attributable

$$\mathcal{A} = (\alpha, \delta, \dot{\alpha}, \dot{\delta}, \overline{t}), \qquad \overline{t} = \frac{1}{m} \sum_{i} t_{i}$$

by linear or quadratic interpolation.

The radial distance ρ and the radial velocity $\dot{\rho}$ remains completely undetermined.

Angular Momentum

For a given attributable A the angular momentum vector can be written as a function of the radial distance and velocity $\rho, \dot{\rho}$:

$$\mathbf{c}(\rho,\dot{\rho}) = \mathbf{r} \times \dot{\mathbf{r}} = \mathbf{D}\dot{\rho} + \mathbf{E}\rho^2 + \mathbf{F}\rho + \mathbf{G}$$

where

$$\begin{aligned} \mathbf{D} &= \mathbf{q} \times \hat{\boldsymbol{\rho}} \\ \mathbf{E} &= \dot{\alpha} \hat{\boldsymbol{\rho}} \times \hat{\boldsymbol{\rho}}_{\alpha} + \dot{\delta} \hat{\boldsymbol{\rho}} \times \hat{\boldsymbol{\rho}}_{\delta} = \eta \mathbf{n} \\ \mathbf{F} &= \dot{\alpha} \mathbf{q} \times \hat{\boldsymbol{\rho}}_{\alpha} + \dot{\delta} \mathbf{q} \times \hat{\boldsymbol{\rho}}_{\delta} + \hat{\boldsymbol{\rho}} \times \dot{\mathbf{q}} \\ \mathbf{G} &= \mathbf{q} \times \dot{\mathbf{q}} \end{aligned}$$

depend only on the attributable A and on the motion of the observer $\mathbf{q}, \dot{\mathbf{q}}$ at time \bar{t} .

Energy

Given A, we can also write the two-body energy as a function of $\rho, \dot{\rho}$:

$$2\mathcal{E}(\rho,\dot{\rho}) = \dot{\rho}^2 + c_1\dot{\rho} + c_2\rho^2 + c_3\rho + c_4 - \frac{2k^2}{\sqrt{\rho^2 + c_5\rho + c_0}}$$

where

$$c_0 = |\mathbf{q}|^2 \qquad c_3 = 2(\dot{\alpha} < \dot{\mathbf{q}}, \hat{\boldsymbol{\rho}}_{\boldsymbol{\alpha}} > +\dot{\delta} < \dot{\mathbf{q}}, \hat{\boldsymbol{\rho}}_{\boldsymbol{\delta}} >)$$

$$c_1 = 2 < \dot{\mathbf{q}}, \hat{\boldsymbol{\rho}} > \qquad c_4 = |\dot{\mathbf{q}}|^2$$

$$c_2 = \eta^2 \qquad c_5 = 2 < \mathbf{q}, \hat{\boldsymbol{\rho}} >$$

depend only on $\mathcal{A}, \mathbf{q}, \dot{\mathbf{q}}$.

Equating the angular momentum

Given two attributables A_1 , A_2 at times t_1 , t_2 , by equating the angular momentum at the two times we obtain the relation

$$\mathbf{D}_1\dot{\rho}_1 - \mathbf{D}_2\dot{\rho}_2 = \mathbf{J}(\rho_1, \rho_2) \tag{1}$$

where

$$\mathbf{J}(\rho_1, \rho_2) = \mathbf{E}_2 \rho_2^2 - \mathbf{E}_1 \rho_1^2 + \mathbf{F}_2 \rho_2 - \mathbf{F}_1 \rho_1 + \mathbf{G}_2 - \mathbf{G}_1.$$

By scalar multiplication of (1) with $\mathbf{D}_1 \times \mathbf{D}_2$ we perform elimination of the variables $\dot{\rho}_1, \dot{\rho}_2$ and obtain the equation

$$q(\rho_1, \rho_2) \stackrel{def}{=} \mathbf{D}_1 \times \mathbf{D}_2 \cdot \mathbf{J}(\rho_1, \rho_2) = 0$$

Equating the energy

Given A_1 , A_2 we can also equate the corresponding two-body energies \mathcal{E}_1 , \mathcal{E}_2 ; by vector multiplication of (1) with \mathbf{D}_1 and \mathbf{D}_2 , projecting on $\mathbf{D}_1 \times \mathbf{D}_2$ we obtain

$$\dot{\rho}_1(\rho_1,\rho_2) = \frac{(\mathbf{J} \times \mathbf{D}_2) \cdot (\mathbf{D}_1 \times \mathbf{D}_2)}{|\mathbf{D}_1 \times \mathbf{D}_2|^2}; \quad \dot{\rho}_2(\rho_1,\rho_2) = \frac{(\mathbf{J} \times \mathbf{D}_1) \cdot (\mathbf{D}_1 \times \mathbf{D}_2)}{|\mathbf{D}_1 \times \mathbf{D}_2|^2}$$

and, substituting into $\mathcal{E}_1 = \mathcal{E}_2$,

$$\mathcal{F}_1(\rho_1, \rho_2) - \frac{2k^2}{\sqrt{\mathcal{G}_1(\rho_1)}} = \mathcal{F}_2(\rho_1, \rho_2) - \frac{2k^2}{\sqrt{\mathcal{G}_2(\rho_2)}}$$
.

By squaring twice we obtain the polynomial equation

$$p(\rho_1, \rho_2) \stackrel{\text{def}}{=} \left[(\mathcal{F}_1 - \mathcal{F}_2)^2 \mathcal{G}_1 \mathcal{G}_2 - 4k^4 (\mathcal{G}_1 + \mathcal{G}_2) \right]^2 - 64k^8 \mathcal{G}_1 \mathcal{G}_2 = 0$$

with total degree 24.

Intersections between the curves

Idea of equating the angular momentum and energy to compute an orbit: *Taff and Hall (1976)*.

We study the problem

$$\begin{cases} p(\rho_1, \rho_2) = 0 \\ q(\rho_1, \rho_2) = 0 \end{cases}, \qquad \rho_1, \rho_2 > 0$$
 (2)

with classical Algebraic Geometry methods. We can write

$$p(\rho_1, \rho_2) = \sum_{j=0}^{20} a_j(\rho_2) \ \rho_1^j,$$

$$q(\rho_1, \rho_2) = b_2 \ \rho_1^2 + b_1 \ \rho_1 + b_0(\rho_2)$$

for some coefficients a_i, b_i , depending only on ρ_2 .

Elimination of ρ_1

We consider the resultant $Res(\rho_2) = res(p, q, \rho_1)(\rho_2)$ of p, q with respect to ρ_1 : it is a 48 degree polynomial defined as the determinant of the Sylvester matrix

$$\mathtt{Sylv}(\rho_2) = \left(\begin{array}{cccccc} a_{20} & 0 & b_2 & 0 & \dots & \dots & 0 \\ a_{19} & a_{20} & b_1 & b_2 & 0 & \dots & 0 \\ \vdots & \vdots & b_0 & b_1 & b_2 & \dots & \vdots \\ \vdots & \vdots & 0 & b_0 & b_1 & \dots & \vdots \\ a_0 & a_1 & \vdots & \vdots & \vdots & b_0 & b_1 \\ 0 & a_0 & 0 & 0 & 0 & 0 & b_0 \end{array} \right).$$

The ρ_2 component of a solution of (2) must be a root of $Res(\rho_2)$.

Computation of the solutions

- Evaluation of $a_i(\rho_2), b_j(\rho_2)$ at the 64-th roots of unit $\omega_k = e^{-2\pi i \frac{k}{64}}$, k=0,...,63 by a DFT algorithm.
- Computation of the determinant of the 64 Sylvester matrices; by relation

$$\det\left(\operatorname{Sylv}(\rho_2)|_{\rho_2=\omega_k}\right) = \left(\det\operatorname{Sylv}(\rho_2)\right)|_{\rho_2=\omega_k}$$

we have the values of $Res(\rho_2)$ at the 64-th roots of unit.

• Application of an IDFT algorithm to obtain the coefficients of $Res(\rho_2)$ from its evaluations.

Computation of the solutions

- Computation of the positive roots $\rho_2(k)$ of $Res(\rho_2)$.
- For each k solve $q(\rho_1, \rho_2(k)) = 0$ and compute the two possible values for $\rho_1(k, 1), \rho_1(k, 2)$.
- Compute $p(\rho_1(k,1), \rho_2(k)), p(\rho_1(k,2), \rho_2(k))$ and select the pair that gives the smaller absolute value.
- Compute the corresponding values of $\dot{\rho}_1, \dot{\rho}_2$.
- Change coordinates to obtain the related Keplerian orbits at times $\tilde{t}_i = \bar{t}_i \frac{\rho_i}{c}$, i = 1, 2, corrected by aberration.
- Eliminate spurious solutions in the previous steps.

Selection of the solutions

The knowledge of the angular momentum vector and of the energy at a given time allows us to compute the elements

$$a, e, I, \Omega$$
.

The two attributables A_1 , A_2 gives 8 scalar data, thus the problem is overdetermined: from a non-spurious solution ρ_1 , ρ_2 of (2) we obtain the same values of a, e, I, Ω at times \tilde{t}_1 , \tilde{t}_2 , but we must check for the *compatibility conditions*

$$\omega_1 = \omega_2, \qquad \ell_1 = \ell_2 + n(\tilde{t}_1 - \tilde{t}_2),$$

where n is the *mean motion* of the celestial body.

Covariance of the solutions

Given $\mathbf{A} = (\mathcal{A}_1, \mathcal{A}_2)$ with covariance matrices $\Gamma_{\mathcal{A}_1}, \Gamma_{\mathcal{A}_2}$, let

$$\mathbf{R} = \mathbf{R}(\mathbf{A}) = (\mathcal{R}_1(\mathbf{A}), \mathcal{R}_2(\mathbf{A})), \qquad \mathcal{R}_i = (\rho_i, \dot{\rho}_i), \quad i = 1, 2$$

be a solution of

$$\boldsymbol{\Phi}(\mathbf{R};\mathbf{A}) = 0, \qquad \boldsymbol{\Phi}(\mathbf{R};\mathbf{A}) = \begin{pmatrix} \mathbf{D}_1 \dot{\rho}_1 - \mathbf{D}_2 \dot{\rho}_2 - \mathbf{J}(\rho_1,\rho_2) \\ \mathcal{E}_1(\rho_1,\dot{\rho}_1) - \mathcal{E}_2(\rho_2,\dot{\rho}_2) \end{pmatrix}.$$

If both $(A_1, \mathcal{R}_1(\mathbf{A}))$, $(A_2, \mathcal{R}_2(\mathbf{A}))$ give bounded orbits at times

$$\tilde{t}_i = \tilde{t}_i(\mathbf{A}) = \bar{t}_i - \frac{\rho_i(\mathbf{A})}{c}, \qquad i = 1, 2,$$

then we can compute the corresponding Keplerian elements.

Covariance of the solutions

We consider the vector

$$\Delta_{1,2} = (\Delta\omega, \Delta\ell) \,,$$

representing the difference in perihelion argument and mean anomaly of the two orbits, comparing the anomalies at the same time \tilde{t}_1 . We introduce the map

$$(\mathcal{A}_1, \mathcal{A}_2) = \mathbf{A} \mapsto \mathbf{\Psi}(\mathbf{A}) = (\mathcal{A}_1, \mathcal{R}_1, \Delta_{1,2})$$
,

giving the orbit $(\mathcal{A}_1, \mathcal{R}_1(\mathbf{A}))$ in spherical coordinates at time \tilde{t}_1 , together with the difference $\Delta_{1,2}(\mathbf{A})$ in the angular elements, which are not constrained by the angular momentum and the energy integrals.

Covariance propagation

By the covariance propagation rule

$$\Gamma_{\Psi(\mathbf{A})} = \frac{\partial \Psi}{\partial \mathbf{A}} \; \Gamma_{\mathbf{A}} \; \left[\frac{\partial \Psi}{\partial \mathbf{A}} \right]^T \; ,$$

where

$$\frac{\partial \Psi}{\partial \textbf{A}} = \left[\begin{array}{ccc} \frac{1}{\partial \mathcal{R}_1} & \frac{0}{\partial \mathcal{R}_1} \\ \frac{\partial \mathcal{A}_1}{\partial \mathcal{A}_1} & \frac{\partial \mathcal{A}_2}{\partial \mathcal{A}_2} \\ \frac{\partial \Delta_{1,2}}{\partial \mathcal{A}_1} & \frac{\partial \Delta_{1,2}}{\partial \mathcal{A}_2} \end{array} \right] \quad \text{ and } \quad \Gamma_{\textbf{A}} = \left[\begin{array}{ccc} \Gamma_{\mathcal{A}_1} & 0 \\ 0 & \Gamma_{\mathcal{A}_2} \end{array} \right] \; .$$

The matrices $\frac{\partial \mathcal{R}_i}{\partial \mathcal{A}_i}$, i, j = 1, 2, can be computed from

$$\frac{\partial R}{\partial A}(A) = -\left[\frac{\partial \Phi}{\partial R}(R(A), A)\right]^{-1} \frac{\partial \Phi}{\partial A}(R(A), A) \ .$$

Identification of attributables (*linkage*)

Problem: decide if the two sets of observations defining A_1 , A_2 can belong to the same Solar system body. We need to check whether the failure of condition

$$\Delta_{1,2}(\mathbf{A}) = \mathbf{0}$$

is within an acceptable range of values, compatible with the observational errors. Take the marginal covariance matrix:

$$\Gamma_{\Delta_{1,2}} = \frac{\partial \Delta_{1,2}}{\partial \mathbf{A}} \Gamma_{\mathbf{A}} \left[\frac{\partial \Delta_{1,2}}{\partial \mathbf{A}} \right]^T ;$$

the inverse matrix $C^{\Delta_{1,2}}=\Gamma_{\Delta_{1,2}}^{-1}$ defines a norm $\|\cdot\|_{\star}$ in the $(\Delta\omega,\Delta\ell)$ plane, allowing to test the identification of $\mathcal{A}_1,\mathcal{A}_2$:

$$\|\Delta_{1,2}\|_{\star}^2 = \Delta_{1,2}C^{\Delta_{1,2}}\Delta_{1,2}^T \le \chi_{max}^2$$
,

 χ_{max} control parameter.

Uncertainty of the orbits

This method also allows to assign an uncertainty to the preliminary orbits that we compute. The solution $(A_1, \mathcal{R}_1(\mathbf{A}))$, in spherical coordinates, has the marginal covariance matrix

$$\Gamma_{(\mathcal{A}_1,\mathcal{R}_1(\mathbf{A}))} = \left[\begin{array}{cc} \Gamma_{\mathcal{A}_1} & \Gamma_{\mathcal{A}_1,\mathcal{R}_1} \\ \Gamma_{\mathcal{R}_1,\mathcal{A}_1} & \Gamma_{\mathcal{R}_1} \end{array} \right]\,,$$

with

$$\begin{split} \Gamma_{\mathcal{A}_1} &= \frac{\partial \mathcal{A}_1}{\partial \mathbf{A}} \Gamma_{\mathbf{A}} \left[\frac{\partial \mathcal{A}_1}{\partial \mathbf{A}} \right]^T \,, \quad \Gamma_{\mathcal{R}_1} &= \frac{\partial \mathcal{R}_1}{\partial \mathbf{A}} \Gamma_{\mathbf{A}} \left[\frac{\partial \mathcal{R}_1}{\partial \mathbf{A}} \right]^T \,, \\ \Gamma_{\mathcal{A}_1, \mathcal{R}_1} &= \Gamma_{\mathcal{A}_1} \left[\frac{\partial \mathcal{R}_1}{\partial \mathcal{A}_1} \right]^T \,, \quad \Gamma_{\mathcal{R}_1, \mathcal{A}_1} &= \Gamma_{\mathcal{A}_1, \mathcal{R}_1}^T \,. \end{split}$$

Conclusions

- The recent improvements in the observational techniques are stimulating the research in Celestial Mechanics, in particular about the determination of the orbits: the huge amount of astrometric data next to be produced needs to be processed by efficient methods.
- Classical orbit determination methods are still worth to be investigated: they still hide some unsolved features.
- It is interesting to investigate orbit determination methods different from the classical ones, for applications to modern sets of data.