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The discovery of Ceres

Giuseppe Piazzi
(1746-1826)

On January 1, 1801 G. Piazzi discovered
Ceres, the first asteroid.
He could follow up the asteroid in the sky for
about 1 month, collecting 21 observations
forming an arc of ∼ 3 degrees.

Problem: find in which part of the sky we have to observe
to recover Ceres when it is visible again;

Orbit determination: given the observations of a Solar
system body, compute its Keplerian orbit.
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Orbit determination methods

C. F. Gauss proposed a method allowing the recover of Ceres
in 1802: he determined an orbit with the observations made by
Piazzi. Given at least three observations of a Solar system
body, his method consists of two steps:

1 determination of a preliminary orbit;
2 application of the least squares method (also known as

differential corrections), using the preliminary orbit as a
starting guess.

There are two famous classical methods to define a preliminary
orbit from three observations: Laplace’s method and Gauss’
method. These techniques are still effective today, if the
available observations fulfill some requirements.
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Modern observations of a Solar system body
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Attributables

Given a short arc of observations (right ascension and
declination)

(αi, δi) ∈ S1 × (−π/2, π/2) at times ti, i = 1 . . . m,

of a Solar system body we can compute an attributable

A = (α, δ, α̇, δ̇, t̄) , t̄ = 1
m

∑

i ti

by linear or quadratic interpolation.
The radial distance ρ and the radial velocity ρ̇ remains
completely undetermined.
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Angular Momentum

For a given attributable A the angular momentum vector can be
written as a function of the radial distance and velocity ρ, ρ̇:

c(ρ, ρ̇) = r × ṙ = Dρ̇ + Eρ2 + Fρ + G

where

D = q × ρ̂

E = α̇ρ̂ × ρ̂α + δ̇ρ̂ × ρ̂δ = ηn
F = α̇q × ρ̂α + δ̇q × ρ̂δ + ρ̂ × q̇
G = q × q̇

depend only on the attributable A and on the motion of the
observer q, q̇ at time t̄.
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Energy

Given A, we can also write the two-body energy as a function
of ρ, ρ̇:

2E(ρ, ρ̇) = ρ̇2 + c1ρ̇ + c2ρ
2 + c3ρ + c4 −

2k2
√

ρ2 + c5ρ + c0

where

c0 = |q|2
c1 = 2 < q̇, ρ̂ >
c2 = η2

c3 = 2(α̇ < q̇, ρ̂α > +δ̇ < q̇, ρ̂δ >)
c4 = |q̇|2
c5 = 2 < q, ρ̂ >

depend only on A, q, q̇.
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Equating the angular momentum

Given two attributables A1,A2 at times t1, t2, by equating the
angular momentum at the two times we obtain the relation

D1ρ̇1 − D2ρ̇2 = J(ρ1, ρ2) (1)

where

J(ρ1, ρ2) = E2ρ
2
2 − E1ρ

2
1 + F2ρ2 − F1ρ1 + G2 − G1 .

By scalar multiplication of (1) with D1 × D2 we perform
elimination of the variables ρ̇1, ρ̇2 and obtain the equation

q(ρ1, ρ2)
def
= D1 × D2 · J(ρ1, ρ2) = 0
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Equating the energy

Given A1,A2 we can also equate the corresponding two-body
energies E1, E2; by vector multiplication of (1) with D1 and D2,
projecting on D1 × D2 we obtain

ρ̇1(ρ1, ρ2) =
(J × D2) · (D1 × D2)

|D1 × D2|2
; ρ̇2(ρ1, ρ2) =

(J × D1) · (D1 × D2)

|D1 × D2|2

and, substituting into E1 = E2,

F1(ρ1, ρ2) − 2k2√
G1(ρ1)

= F2(ρ1, ρ2) − 2k2√
G2(ρ2)

.

By squaring twice we obtain the polynomial equation

p(ρ1, ρ2)
def
=

[

(F1 −F2)
2G1G2 − 4k4(G1 + G2)

]2 − 64k8G1G2 = 0

with total degree 24.
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Intersections between the curves

Idea of equating the angular momentum and energy to
compute an orbit: Taff and Hall (1976).

We study the problem

{

p(ρ1, ρ2) = 0
q(ρ1, ρ2) = 0

, ρ1, ρ2 > 0 (2)

with classical Algebraic Geometry methods. We can write

p(ρ1, ρ2) =

20
∑

j=0

aj(ρ2) ρj
1 ,

q(ρ1, ρ2) = b2 ρ2
1 + b1 ρ1 + b0(ρ2)

for some coefficients ai, bj, depending only on ρ2.
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Elimination of ρ1

We consider the resultant Res(ρ2) = res(p, q, ρ1)(ρ2) of p, q with
respect to ρ1: it is a 48 degree polynomial defined as the
determinant of the Sylvester matrix

Sylv(ρ2) =























a20 0 b2 0 . . . . . . 0
a19 a20 b1 b2 0 . . . 0
...

... b0 b1 b2 . . .
...

...
... 0 b0 b1 . . .

...

a0 a1
...

...
... b0 b1

0 a0 0 0 0 0 b0























.

The ρ2 component of a solution of (2) must be a root of Res(ρ2).
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Computation of the solutions

Evaluation of ai(ρ2), bj(ρ2) at the 64-th roots of unit

ωk = e−2πi k
64 , k = 0, .., 63 by a DFT algorithm.

Computation of the determinant of the 64 Sylvester
matrices; by relation

det (Sylv(ρ2)|ρ2=ωk) = (detSylv(ρ2)) |ρ2=ωk

we have the values of Res(ρ2) at the 64-th roots of unit.

Application of an IDFT algorithm to obtain the coefficients
of Res(ρ2) from its evaluations.
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Computation of the solutions

Computation of the positive roots ρ2(k) of Res(ρ2).

For each k solve q(ρ1, ρ2(k)) = 0 and compute the two
possible values for ρ1(k, 1), ρ1(k, 2).

Compute p(ρ1(k, 1), ρ2(k)), p(ρ1(k, 2), ρ2(k)) and select the
pair that gives the smaller absolute value.

Compute the corresponding values of ρ̇1, ρ̇2.

Change coordinates to obtain the related Keplerian orbits
at times t̃i = t̄i − ρi

c , i = 1, 2, corrected by aberration.

Eliminate spurious solutions in the previous steps.
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Selection of the solutions

The knowledge of the angular momentum vector and of the
energy at a given time allows us to compute the elements

a, e, I,Ω .

The two attributables A1,A2 gives 8 scalar data, thus the
problem is overdetermined: from a non-spurious solution ρ1, ρ2

of (2) we obtain the same values of a, e, I,Ω at times t̃1, t̃2, but
we must check for the compatibility conditions

ω1 = ω2 , ℓ1 = ℓ2 + n(̃t1 − t̃2) ,

where n is the mean motion of the celestial body.

Giovanni F. Gronchi Congresso SAIt 2009, Facolt à di SMFN, Universit à di Pisa



Covariance of the solutions

Given A = (A1,A2) with covariance matrices ΓA1 ,ΓA2 , let

R = R(A) = (R1(A),R2(A)) , Ri = (ρi, ρ̇i), i = 1, 2

be a solution of

Φ(R; A) = 0 , Φ(R; A) =

(

D1ρ̇1 − D2ρ̇2 − J(ρ1, ρ2)
E1(ρ1, ρ̇1) − E2(ρ2, ρ̇2)

)

.

If both (A1,R1(A)), (A2,R2(A)) give bounded orbits at times

t̃i = t̃i(A) = t̄i −
ρi(A)

c
, i = 1, 2 ,

then we can compute the corresponding Keplerian elements.
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Covariance of the solutions

We consider the vector

∆1,2 = (∆ω,∆ℓ) ,

representing the difference in perihelion argument and mean
anomaly of the two orbits, comparing the anomalies at the
same time t̃1. We introduce the map

(A1,A2) = A 7→ Ψ(A) = (A1,R1,∆1,2) ,

giving the orbit (A1,R1(A)) in spherical coordinates at time t̃1,
together with the difference ∆1,2(A) in the angular elements,
which are not constrained by the angular momentum and the
energy integrals.
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Covariance propagation

By the covariance propagation rule

ΓΨ(A) =
∂Ψ

∂A
ΓA

[

∂Ψ

∂A

]T

,

where

∂Ψ

∂A
=





I 0
∂R1

∂A1

∂R1

∂A2
∂∆1,2

∂A1

∂∆1,2

∂A2



 and ΓA =

[

ΓA1 0
0 ΓA2

]

.

The matrices ∂Ri
∂Aj

, i, j = 1, 2, can be computed from

∂R
∂A

(A) = −
[

∂Φ

∂R
(R(A), A)

]−1 ∂Φ

∂A
(R(A), A) .
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Identification of attributables (linkage)

Problem: decide if the two sets of observations defining A1, A2

can belong to the same Solar system body.
We need to check whether the failure of condition

∆1,2(A) = 0

is within an acceptable range of values, compatible with the
observational errors. Take the marginal covariance matrix:

Γ∆1,2 =
∂∆1,2

∂A
ΓA

[

∂∆1,2

∂A

]T

;

the inverse matrix C∆1,2 = Γ−1
∆1,2

defines a norm ‖ · ‖⋆ in the
(∆ω,∆ℓ) plane, allowing to test the identification of A1,A2:

‖∆1,2‖2
⋆ = ∆1,2C∆1,2∆T

1,2 ≤ χ2
max , χmax control parameter.
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Uncertainty of the orbits

This method also allows to assign an uncertainty to the
preliminary orbits that we compute. The solution (A1,R1(A)), in
spherical coordinates, has the marginal covariance matrix

Γ(A1,R1(A)) =

[

ΓA1 ΓA1,R1

ΓR1,A1 ΓR1

]

,

with

ΓA1 =
∂A1

∂A
ΓA

[

∂A1

∂A

]T

, ΓR1 =
∂R1

∂A
ΓA

[

∂R1

∂A

]T

,

ΓA1,R1 = ΓA1

[

∂R1

∂A1

]T

, ΓR1,A1 = ΓT
A1,R1

.
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Conclusions

The recent improvements in the observational techniques
are stimulating the research in Celestial Mechanics, in
particular about the determination of the orbits: the huge
amount of astrometric data next to be produced needs to
be processed by efficient methods.

Classical orbit determination methods are still worth to be
investigated: they still hide some unsolved features.

It is interesting to investigate orbit determination methods
different from the classical ones, for applications to modern
sets of data.
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