Orbit determination with the 2-body integrals

Giovanni Federico Gronchi

Dipartimento di Matematica, Università di Pisa

6 Maggio 2009

Giovanni F. Gronchi [Congresso SAIt 2009, Facolta di SMFN, Universit](#page-20-0) ` a di Pisa `

つのへ

Orbit determination with the 2-body integrals

joint work with

Linda Dimare (Universita di Roma I) ` **Andrea Milani** (Università di Pisa)

Giovanni F. Gronchi [Congresso SAIt 2009, Facolta di SMFN, Universit](#page-0-0) ` a di Pisa `

 290

The discovery of Ceres

On January 1, 1801 G. Piazzi discovered Ceres, the first asteroid. He could follow up the asteroid in the sky for about 1 month, collecting 21 observations forming an arc of \sim 3 degrees.

Giuseppe Piazzi (1746-1826)

- Problem: find in which part of the sky we have to observe to recover Ceres when it is visible again;
- Orbit determination: given the observations of a Solar system body, compute its Keplerian orbit.

 α

C. F. Gauss proposed a method allowing the recover of Ceres in 1802: he determined an orbit with the observations made by Piazzi. Given at least three observations of a Solar system body, his method consists of two steps:

- **1** determination of a *preliminary orbit*;
- **²** application of the least squares method (also known as differential corrections), using the preliminary orbit as a starting guess.

There are two famous classical methods to define a preliminary orbit from three observations: Laplace's method and Gauss' method. These techniques are still effective today, if the available observations fulfill some requirements.

Modern observations of a Solar system body

Giovanni F. Gronchi [Congresso SAIt 2009, Facolta di SMFN, Universit](#page-0-0) ` a di Pisa `

←□

 290

Given a short arc of observations (right ascension and declination)

$$
(\alpha_i,\delta_i)\in S^1\times (-\pi/2,\pi/2)
$$
 at times t_i , $i=1...m$,

of a Solar system body we can compute an attributable

$$
\mathcal{A} = (\alpha, \delta, \dot{\alpha}, \dot{\delta}, \bar{t}), \qquad \bar{t} = \frac{1}{m} \sum_i t_i
$$

by linear or quadratic interpolation. The radial distance ρ and the radial velocity ρ remains completely undetermined.

For a given attributable $\mathcal A$ the angular momentum vector can be written as a function of the radial distance and velocity ρ , $\dot{\rho}$:

$$
\mathbf{c}(\rho, \dot{\rho}) = \mathbf{r} \times \dot{\mathbf{r}} = \mathbf{D}\dot{\rho} + \mathbf{E}\rho^2 + \mathbf{F}\rho + \mathbf{G}
$$

where

$$
\mathbf{D} = \mathbf{q} \times \hat{\rho} \n\mathbf{E} = \dot{\alpha}\hat{\rho} \times \hat{\rho}_{\alpha} + \dot{\delta}\hat{\rho} \times \hat{\rho}_{\delta} = \eta \mathbf{n} \n\mathbf{F} = \dot{\alpha}\mathbf{q} \times \hat{\rho}_{\alpha} + \dot{\delta}\mathbf{q} \times \hat{\rho}_{\delta} + \hat{\rho} \times \dot{\mathbf{q}} \n\mathbf{G} = \mathbf{q} \times \dot{\mathbf{q}}
$$

depend only on the attributable A and on the motion of the observer \mathbf{q} , $\dot{\mathbf{q}}$ at time \bar{t} .

Given A, we can also write the two-body energy as a function of $\rho, \dot{\rho}$:

$$
2\mathcal{E}(\rho,\dot{\rho}) = \dot{\rho}^2 + c_1\dot{\rho} + c_2\rho^2 + c_3\rho + c_4 - \frac{2k^2}{\sqrt{\rho^2 + c_5\rho + c_0}}
$$

where

$$
c_0 = |\mathbf{q}|^2
$$

\n
$$
c_1 = 2 < \dot{\mathbf{q}}, \hat{\boldsymbol{\rho}} > \qquad c_4 = |\dot{\mathbf{q}}|^2
$$

\n
$$
c_2 = \eta^2
$$

\n
$$
c_3 = 2(\dot{\alpha} < \dot{\mathbf{q}}, \hat{\boldsymbol{\rho}}_{\alpha} > +\dot{\delta} < \dot{\mathbf{q}}, \hat{\boldsymbol{\rho}}_{\delta} >)
$$

\n
$$
c_4 = |\dot{\mathbf{q}}|^2
$$

\n
$$
c_5 = 2 < \mathbf{q}, \hat{\boldsymbol{\rho}} >
$$

depend only on A , q , \dot{q} .

 \leftarrow

 290

Given two attributables A_1, A_2 at times t_1, t_2 , by equating the angular momentum at the two times we obtain the relation

$$
\mathbf{D}_1 \dot{\rho}_1 - \mathbf{D}_2 \dot{\rho}_2 = \mathbf{J}(\rho_1, \rho_2)
$$
 (1)

where

$$
\mathbf{J}(\rho_1,\rho_2) = \mathbf{E}_2 \rho_2^2 - \mathbf{E}_1 \rho_1^2 + \mathbf{F}_2 \rho_2 - \mathbf{F}_1 \rho_1 + \mathbf{G}_2 - \mathbf{G}_1.
$$

By scalar multiplication of [\(1\)](#page-8-0) with $\mathbf{D}_1 \times \mathbf{D}_2$ we perform elimination of the variables ρ_1 , ρ_2 and obtain the equation

 $q(\rho_1, \rho_2) \stackrel{\text{def}}{=} \mathbf{D}_1 \times \mathbf{D}_2 \cdot \mathbf{J}(\rho_1, \rho_2) = 0$

Equating the energy

Given A_1, A_2 we can also equate the corresponding two-body energies $\mathcal{E}_1, \mathcal{E}_2$; by vector multiplication of [\(1\)](#page-8-0) with \mathbf{D}_1 and \mathbf{D}_2 , projecting on $\mathbf{D}_1 \times \mathbf{D}_2$ we obtain

$$
\dot{\rho}_1(\rho_1,\rho_2)=\frac{(\mathbf{J}\times\mathbf{D}_2)\cdot(\mathbf{D}_1\times\mathbf{D}_2)}{|\mathbf{D}_1\times\mathbf{D}_2|^2}\,;\hspace{0.5cm} \dot{\rho}_2(\rho_1,\rho_2)=\frac{(\mathbf{J}\times\mathbf{D}_1)\cdot(\mathbf{D}_1\times\mathbf{D}_2)}{|\mathbf{D}_1\times\mathbf{D}_2|^2}\;\;\bigg\vert
$$

and, substituting into $\mathcal{E}_1 = \mathcal{E}_2$,

$$
\mathcal{F}_1(\rho_1,\rho_2)-\frac{2k^2}{\sqrt{\mathcal{G}_1(\rho_1)}}=\mathcal{F}_2(\rho_1,\rho_2)-\frac{2k^2}{\sqrt{\mathcal{G}_2(\rho_2)}}.
$$

By squaring twice we obtain the polynomial equation

$$
p(\rho_1, \rho_2) \stackrel{def}{=} \left[(\mathcal{F}_1 - \mathcal{F}_2)^2 \mathcal{G}_1 \mathcal{G}_2 - 4k^4 (\mathcal{G}_1 + \mathcal{G}_2) \right]^2 - 64k^8 \mathcal{G}_1 \mathcal{G}_2 = 0
$$

with total degree 24.

 \blacksquare

Idea of equating the angular momentum and energy to compute an orbit: Taff and Hall (1976).

We study the problem

$$
\begin{cases}\np(\rho_1, \rho_2) = 0 \\
q(\rho_1, \rho_2) = 0\n\end{cases}, \qquad \rho_1, \rho_2 > 0
$$
\n(2)

with classical Algebraic Geometry methods. We can write

$$
p(\rho_1, \rho_2) = \sum_{j=0}^{20} a_j(\rho_2) \rho_1^j,
$$

$$
q(\rho_1, \rho_2) = b_2 \rho_1^2 + b_1 \rho_1 + b_0(\rho_2)
$$

for some coefficients $a_i, b_j,$ depending only on $\rho_2.$

←□

We consider the resultant $Res(\rho_2) = \text{res}(p, q, \rho_1)(\rho_2)$ of p, q with respect to ρ_1 : it is a 48 degree polynomial defined as the determinant of the Sylvester matrix

The ρ_2 component of a solution of [\(2\)](#page-10-0) must be a root of $Res(\rho_2)$.

Computation of the solutions

- Evaluation of $a_i(\rho_2), b_i(\rho_2)$ at the 64-th roots of unit $\omega_k = e^{-2\pi i \frac{k}{64}}\;, k=0,..,63$ by a DFT algorithm.
- Computation of the determinant of the 64 Sylvester matrices; by relation

$\det(\mathrm{Sylv}(\rho_2)|_{\rho_2=\omega_k}) = (\det \mathrm{Sylv}(\rho_2))|_{\rho_2=\omega_k}$

we have the values of $Res(\rho_2)$ at the 64-th roots of unit.

● Application of an IDFT algorithm to obtain the coefficients of $Res(\rho_2)$ from its evaluations.

Computation of the solutions

- **Computation of the positive roots** $\rho_2(k)$ of $Res(\rho_2)$.
- For each *k* solve $q(\rho_1, \rho_2(k)) = 0$ and compute the two possible values for $\rho_1(k, 1), \rho_1(k, 2)$.
- **Compute** $p(\rho_1(k, 1), \rho_2(k)), p(\rho_1(k, 2), \rho_2(k))$ and select the pair that gives the smaller absolute value.
- Compute the corresponding values of $\dot{\rho}_1$, $\dot{\rho}_2$.
- Change coordinates to obtain the related Keplerian orbits at times $\tilde{t}_i = \overline{t}_i - \frac{\rho_i}{c}$ $\frac{\partial i}{\partial c}$, $i = 1, 2$, corrected by aberration.
- **•** Eliminate *spurious solutions* in the previous steps.

The knowledge of the angular momentum vector and of the energy at a given time allows us to compute the elements

 a, e, I, Ω .

The two attributables A_1, A_2 gives 8 scalar data, thus the problem is overdetermined: from a non-spurious solution ρ_1, ρ_2 of [\(2\)](#page-10-0) we obtain the same values of a, e, I, Ω at times \tilde{t}_1, \tilde{t}_2 , but we must check for the *compatibility conditions*

 $\omega_1 = \omega_2$, $\ell_1 = \ell_2 + n(\tilde{t}_1 - \tilde{t}_2)$,

where *n* is the *mean motion* of the celestial body.

Covariance of the solutions

Given $\mathbf{A} = (\mathcal{A}_1, \mathcal{A}_2)$ with covariance matrices $\Gamma_{\mathcal{A}_1}, \Gamma_{\mathcal{A}_2}$, let

R = **R**(**A**) = (\mathcal{R}_1 **(A**), \mathcal{R}_2 **(A**)), \qquad \mathcal{R}_i = (ρ_i , $\dot{\rho}_i$), $i = 1, 2$

be a solution of

$$
\Phi(\mathbf{R};\mathbf{A})=0\,,\qquad \Phi(\mathbf{R};\mathbf{A})=\left(\begin{array}{c}\mathbf{D}_1\dot{\rho}_1-\mathbf{D}_2\dot{\rho}_2-\mathbf{J}(\rho_1,\rho_2)\\ \mathcal{E}_1(\rho_1,\dot{\rho}_1)-\mathcal{E}_2(\rho_2,\dot{\rho}_2)\end{array}\right)\;.
$$

If both $(A_1, \mathcal{R}_1(\mathbf{A}))$, $(A_2, \mathcal{R}_2(\mathbf{A}))$ give bounded orbits at times

$$
\tilde{t}_i = \tilde{t}_i(\mathbf{A}) = \overline{t}_i - \frac{\rho_i(\mathbf{A})}{c}, \qquad i = 1, 2,
$$

then we can compute the corresponding Keplerian elements.

イロン イ部ン イミン イモン

 Ω

We consider the vector

 $\Delta_{1,2} = (\Delta \omega, \Delta \ell),$

representing the difference in perihelion argument and mean anomaly of the two orbits, comparing the anomalies at the same time \tilde{t}_1 . We introduce the map

 $(\mathcal{A}_1, \mathcal{A}_2) = \mathbf{A} \mapsto \Psi(\mathbf{A}) = (\mathcal{A}_1, \mathcal{R}_1, \Delta_{1,2}),$

giving the orbit $(A_1, R_1(A))$ in spherical coordinates at time \tilde{t}_1 , together with the difference $\Delta_{1,2}(\mathbf{A})$ in the angular elements, which are not constrained by the angular momentum and the energy integrals.

Covariance propagation

By the covariance propagation rule

$$
\Gamma_{\mathbf{\Psi}(\mathbf{A})} = \frac{\partial \mathbf{\Psi}}{\partial \mathbf{A}} \Gamma_{\mathbf{A}} \left[\frac{\partial \mathbf{\Psi}}{\partial \mathbf{A}} \right]^T,
$$

where

$$
\frac{\partial \Psi}{\partial \mathbf{A}} = \left[\begin{array}{cc} \frac{1}{\partial \mathcal{R}_1} & \frac{\partial}{\partial \mathcal{R}_1} \\ \frac{\partial \Delta_{1,2}}{\partial \mathcal{A}_1} & \frac{\partial \Delta_{1,2}}{\partial \mathcal{A}_2} \end{array} \right] \quad \text{and} \quad \Gamma_{\mathbf{A}} = \left[\begin{array}{cc} \Gamma_{\mathcal{A}_1} & 0 \\ 0 & \Gamma_{\mathcal{A}_2} \end{array} \right] .
$$

The matrices $\frac{\partial \mathcal{R}_i}{\partial \mathcal{A}_j}, i,j=1,2,$ can be computed from

$$
\frac{\partial \boldsymbol{R}}{\partial \boldsymbol{A}}(\boldsymbol{A}) = -\left[\frac{\partial \boldsymbol{\Phi}}{\partial \boldsymbol{R}}(\boldsymbol{R}(\boldsymbol{A}),\boldsymbol{A})\right]^{-1}\frac{\partial \boldsymbol{\Phi}}{\partial \boldsymbol{A}}(\boldsymbol{R}(\boldsymbol{A}),\boldsymbol{A})\;.
$$

つへへ

Identification of attributables (linkage)

Problem: decide if the two sets of observations defining A_1, A_2 can belong to the same Solar system body. We need to check whether the failure of condition

 $\Delta_{1,2}({\bf A}) = 0$

is within an acceptable range of values, compatible with the observational errors. Take the marginal covariance matrix:

$$
\Gamma_{\Delta_{1,2}} = \frac{\partial \Delta_{1,2}}{\partial \mathbf{A}} \Gamma_{\mathbf{A}} \left[\frac{\partial \Delta_{1,2}}{\partial \mathbf{A}} \right]^T ;
$$

the inverse matrix $C^{\Delta_{1,2}}=\Gamma_{\Delta_{1,2}}^{-1}$ defines a norm $\|\cdot\|_{\star}$ in the $(\Delta\omega, \Delta\ell)$ plane, allowing to test the identification of $\mathcal{A}_1, \mathcal{A}_2$:

k∆1,2k 2 [⋆] = ∆1,2*C* [∆]1,2∆*^T* ¹,² ≤ χ 2 *max* , χ*max* control parameter. **Giovanni F. Gronchi [Congresso SAIt 2009, Facolta di SMFN, Universit](#page-0-0) ` a di Pisa `**

This method also allows to assign an uncertainty to the preliminary orbits that we compute. The solution $(A_1, R_1(\mathbf{A}))$, in spherical coordinates, has the marginal covariance matrix

$$
\Gamma_{(\mathcal{A}_1,\mathcal{R}_1(\mathbf{A}))} = \left[\begin{array}{cc} \Gamma_{\mathcal{A}_1} & \Gamma_{\mathcal{A}_1,\mathcal{R}_1} \\ \Gamma_{\mathcal{R}_1,\mathcal{A}_1} & \Gamma_{\mathcal{R}_1} \end{array} \right],
$$

with

$$
\Gamma_{A_1} = \frac{\partial A_1}{\partial \mathbf{A}} \Gamma_{\mathbf{A}} \left[\frac{\partial A_1}{\partial \mathbf{A}} \right]^T, \quad \Gamma_{\mathcal{R}_1} = \frac{\partial \mathcal{R}_1}{\partial \mathbf{A}} \Gamma_{\mathbf{A}} \left[\frac{\partial \mathcal{R}_1}{\partial \mathbf{A}} \right]^T,
$$

$$
\Gamma_{A_1, \mathcal{R}_1} = \Gamma_{A_1} \left[\frac{\partial \mathcal{R}_1}{\partial \mathcal{A}_1} \right]^T, \quad \Gamma_{\mathcal{R}_1, \mathcal{A}_1} = \Gamma_{A_1, \mathcal{R}_1}^T.
$$

Giovanni F. Gronchi [Congresso SAIt 2009, Facolta di SMFN, Universit](#page-0-0) ` a di Pisa `

Conclusions

- The recent improvements in the observational techniques are stimulating the research in Celestial Mechanics, in particular about the determination of the orbits: the huge amount of astrometric data next to be produced needs to be processed by efficient methods.
- Classical orbit determination methods are still worth to be investigated: they still hide some unsolved features.
- ● It is interesting to investigate orbit determination methods different from the classical ones, for applications to modern sets of data.