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The discovery of Ceres

On January 1, 1801 G. Piazzi discovered
Ceres, the first asteroid.

He could follow up the asteroid in the sky for
about 1 month, collecting 21 observations
forming an arc of ~ 3 degrees.

Giuseppe Piazzi
(1746-1826)

@ Problem: find in which part of the sky we have to observe
to recover Ceres when it is visible again;

@ Orbit determination: given the observations of a Solar
system body, compute its Keplerian orbit.
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Orbit determination methods

C. F. Gauss proposed a method allowing the recover of Ceres
in 1802: he determined an orbit with the observations made by
Piazzi. Given at least three observations of a Solar system
body, his method consists of two steps:

@ determination of a preliminary orbit;

@ application of the least squares method (also known as
differential corrections), using the preliminary orbit as a
starting guess.

There are two famous classical methods to define a preliminary
orbit from three observations: Laplace’s method and Gauss’
method. These techniques are still effective today, if the
available observations fulfill some requirements.
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Modern observations of a Solar system body
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Attributables

Given a short arc of observations (right ascension and
declination)

(oq,8) € St x (—7/2,7/2) attimes tj, i = 1

of a Solar system body we can compute an attributable

.m,
A= (a,6,6,6,%), =Lt J
by linear or quadratic interpolation.
The radial distance p and the radial velocity p remains
completely undetermined.
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Angular Momentum

For a given attributable .4 the angular momentum vector can be
written as a function of the radial distance and velocity p, p:

c(p,p) =1 xF =Dp+Ep?+Fp+G J

where

D=gxp
E:aﬁxﬁa+5ﬁxﬁ5:77n
F =60 x po+00 % ps+p x g
G=qxq

depend only on the attributable .4 and on the motion of the
observer g, q at time t.
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Given A, we can also write the two-body energy as a function

of p, p:
TS . 2K2
28(p,p) = p*+ C1p+ Cp” + C3p + Ca — —=
V/P% + Csp + Co

where

Co = |q/? C3 = 2(6 < §, pa > +0 < 4, p5 >)

a=2<¢,p> cp=|g]

C2 =17 Cc=2<0q,p>

depend only on A, q,q.

Giovanni F. Gronchi Congresso SAIt 2009, Facolt a di SMFN, Universit a di Pisa



Equating the angular momentum

Given two attributables A;, A, at times ty, to, by equating the
angular momentum at the two times we obtain the relation

where

D1p1 — D2p2 = I(p1, p2)

()|
J(p1, p2) = Eop3 — E1p? + Fops — F1p1 + Gy — Gy . J
By scalar multiplication of (1) with D1 x D, we perform
elimination of the variables p1, p» and obtain the equation
def
d(p1, p2) = D1 x D2-J(p1,p2) =0
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Equating the energy

Given A;, A, we can also equate the corresponding two-body
energies &1, &2; by vector multiplication of (1) with D1 and Do,
projecting on D1 x D, we obtain

(J X Dz)-(Dl X Dz).

. - . . (J X Dl) o (Dl X Dz)
p1(p1, p2) = D1 x DyJ? ;o p2(pr, p2) = D1 x DoJ? J
and, substituting into &1 = &,
Y G 2
Fales, p2) Ga(p1) F2(p1, p2) Ga(p2) J

By squaring twice we obtain the polynomial equation

D(p1 p2) & [(F1 — F2)261G2 — 4G + G2)]* — 64KBG1G, = O J

with total degree 24.
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Intersections between the curves

Idea of equating the angular momentum and energy to
compute an orbit: Taff and Hall (1976).

We study the problem

{ P(p1,p2) =0
0

; ,p2>0 2
a(p1, p2) = P2 ( )J

with classical Algebraic Geometry methods. We can write

PlaPZ Zaj PZ pJ17

a(p1, p2) = bz p3 + b1 p1 + bo(p2)

for some coefficients g, bj, depending only on p.

o F - = = DAl
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Elimination of p;

We consider the resultant Res(p2) = res(p,q, p1)(p2) of p,q with
respect to pp: it is a 48 degree polynomial defined as the
determinant of the Sylvester matrix

ao 0 b2 o ... ... O
a9 ayp b1 b 0 ... 0O
bp by by
Syl v(p2) = o o
0 il
ag a bo b]_
0 a O 0 0 by

4

The p, component of a solution of (2) must be a root of Res(p>).

u]
L)
1
ul
!
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Computation of the solutions

@ Evaluation of & (p2), bj(p2) at the 64-th roots of unit
wk = €275 k=0,..,63 by a DFT algorithm.

@ Computation of the determinant of the 64 Sylvester
matrices; by relation

det (Syl V(p2)|pp=wi) = (At Syl V(p2)) | py=w J

we have the values of Res(p,) at the 64-th roots of unit.

@ Application of an IDFT algorithm to obtain the coefficients
of Res(p2) from its evaluations.
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Computation of the solutions

@ Computation of the positive roots p»(k) of Res(p2).

@ For each k solve q(p1, p2(k)) = 0 and compute the two
possible values for p1(k, 1), p1(K, 2).

@ Compute p(p1(k, 1), p2(k)), p(p1(k, 2), p2(k)) and select the
pair that gives the smaller absolute value.

@ Compute the corresponding values of p1, p.

@ Change coordinates to obtain the related Keplerian orbits
attimest =T — 2,1 = 1,2, corrected by aberration.

@ Eliminate spurious solutions in the previous steps.
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Selection of the solutions

The knowledge of the angular momentum vector and of the
energy at a given time allows us to compute the elements

a,el, Q. J

The two attributables A1, A, gives 8 scalar data, thus the
problem is overdetermined: from a non-spurious solution p1, p2
of (2) we obtain the same values of a, e, 1, at times 3, T, but
we must check for the compatibility conditions

w1 = woy, 61:€2+n(f1—f2), J

where nis the mean motion of the celestial body.
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Covariance of the solutions

Given A = (A1, A) with covariance matrices I" 4,, I 4,, let

R=R(A) = (R1(A),R2(A)), Ri = (pi,pi), 1=12 J

be a solution of

Dip1 — D2,02 — J(p1, p2) >
P(R;A)=0 . .
(RiA) ’ ( E1(p1, p1) — E2(p2, p2)
If both (A1, R1(A)), (A2, R2(A)) give bounded orbits at times
fi:fi('A‘):fi_ﬁcA)7 i:1727 J

o F = = E DA
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Covariance of the solutions

We consider the vector

A1z = (Aw, Af), ]

representing the difference in perihelion argument and mean
anomaly of the two orbits, comparing the anomalies at the
same time t;. We introduce the map

(A1, A2) = A > W(A) = (A1, Ry, A1) J

giving the orbit (A1, R1(A)) in spherical coordinates at time ;,
together with the difference A1 2(A) in the angular elements,
which are not constrained by the angular momentum and the
energy integrals.

Giovanni F. Gronchi Congresso SAIt 2009, Facolt a di SMFN, Universit a di Pisa



Covariance propagation

By the covariance propagation rule

ow 0w’
Twp) =54 Ta [O—A} ; J
where
oR: R
ov . OO . FAl 0
8—A - OBAA:Z GBAAfz :| and FA B |: 0 PAZ :| '
0A; A

The matrices g—ﬁﬁ, i,j = 1,2, can be computed from
]

oR 0P oo
AR = - [8—R(R(A),A)} oa (R(A),A) . J
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Identification of attributables (linkage)

Problem: decide if the two sets of observations defining A;, A»
can belong to the same Solar system body.
We need to check whether the failure of condition

A12(A) =0 J

is within an acceptable range of values, compatible with the
observational errors. Take the marginal covariance matrix:

11A1,2 =

1o [0A12]7
I'a ;
oA oA

the inverse matrix CA12 = I';! defines a norm || - | in the
(Aw, A?) plane, allowing to test the identification of 41, .A45:

|A122 = Al’ZCAl,ZAI’Z < Xox s Xmax control parameter. J

o = =

1
i
S
o
i)
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Uncertainty of the orbits

This method also allows to assign an uncertainty to the
preliminary orbits that we compute. The solution (A3, R1(A)), in
spherical coordinates, has the marginal covariance matrix

L, ri(A)) = {

Ly LRy ]
FR17A1 PRl ’

with
r, - %A 0AL7" r. - IR, oRa]"
AT A A oA | 0 T A A oA |

oR11"
FALRl = F-Al [a—./l]_] ) FRLAl = FL:L,Rl :
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Conclusions

@ The recent improvements in the observational techniques
are stimulating the research in Celestial Mechanics, in
particular about the determination of the orbits: the huge
amount of astrometric data next to be produced needs to
be processed by efficient methods.

@ Classical orbit determination methods are still worth to be
investigated: they still hide some unsolved features.

@ It is interesting to investigate orbit determination methods
different from the classical ones, for applications to modern
sets of data.
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