

First results on Fermi LAT observations of AGNs

Stefano Ciprini

Consorzio Interuniversitario per la Fisica Spaziale (CIFS), Torino Dipartimento di Fisica, Università degli Studi di Perugia Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Perugia

On behalf of the Fermi LAT collaboration

stefano.ciprini@pg.infn.it

AGN & blazar characteristics

Gamma-ray Space Telescope

Almost all galaxies contain a massive black hole

- ★ 99% of them are (almost) silent (e.g. our Galaxy)
- ★ 1% is active (mostly radio-quiet AGNs): accretion onto a central, supermassive black hole Accretion disks produce optical/UV/X-ray emission via various thermal processes
- \star 0.1% is radio loud: jets mostly visible in the radio
- ★ Jets: highly collimated relativistic outflows with Lorentz factor about 10
- ✓ Compact radio core, flat or inverted spectrum, relatively high radio and optical polarization
- Extreme variability at all frequencies (gamma-rays too), large brightness temps, superluminal motion
- ✓ Unified Model: observer line-of-sight determines source properties, e.g., radio galaxy vs blazar
- ✓ Other factors: accretion rate, BH mass and spin, host galaxy
- ✓ **FSRQs:** bright broad emission lines, sometimes a "blue bump" (accretion disc), multi-temperature disk emission, broad lines in OUV, non-thermal components peak in IR & hard X-ray/MeV regime, high luminosity (L ~10⁴⁸ erg s⁻¹) and $z \ge 1$
- ✓ **BL Lacs**: weak (EW<5 Å) emission lines, little or no evidence of disk or emission lines in Opt-UV, non-thermal peaks in UV/soft X-rays & GeV, lower luminosity (L~ 10^{45} erg ^{s−1}) and z < 0.5

53° Congresso SAlt - Pisa 2009 Pisa, Italy, May 4-8, 2009

Key question for blazars

- Emission mechanisms (especially for high energy component)
 - □ Leptonic (IC of synchrotron or external photons) vs hadronic ($\pi_0 \rightarrow \gamma \gamma$, proton synchrotron)
- Emission location
 - □ Single zone for all wavebands (completely constraining for simplest leptonic models)
 - □ Opacity effects and energy-dependent photospheres
- Particle acceleration mechanisms
 - □ Shocks, Blandford-Znajek
- Jet composition
 - Deputing flux, leptonic, ions
- □ Jet confinement
 - □ External pressure, magnetic stresses
- Accretion disk—black hole—jet connection
- Blazars as probes of the extragalactic background light (EBL)
- Effect of blazar emission on host galaxies and galaxy clusters

stefano.ciprini@pg.infn.it

E, [MeV] 10-8 10-6 10-4 10-2 10² 104 10 10-3 -10 cm^{-z} -11 erg 3C 279 ("10)" = 10 -11 = 11 -120 W Com 2155-304 10-8 13 19 21 23 25 27 15 17 [Hz] Log

3

Fermi Gamma-ray Space Telescope (formerly GLAST)

3 month photon counts map

3 month high confidence source list

• 205 sources with significance > 10σ (EGRET found fewer than 30). Typical 95% CL error radius is <10 arcmin.

stefano.ciprini@pg.infn.it

- Based on 1 week time scales
- 68/205 show variability with probability > 99%
- Isotropic distribution ⇒ blazars

53° Congresso SAlt - Pisa 2009

AGN/blazar associations

Fermi-GST LAT bright source list catalog, 0FGL: 132 sources with TS>100, |b|>10° 7 pulsars, **125 AGN candidates**

CGRaBS (Healey et al. 08) 1627 radio sources from CRATES association based on Figure-of-Merit (spatial, radio and X spectrum) established from EGRET **BZCat** (Massaro et al. 08) Compilation of 2500 known blazars association based on spatial coincidence (Mattox et al., 01)

101 high-conf. (P>90%) associations 14 low-conf. (40%<P<90%) associations 102 high-conf. (P>90%) associations 4 low-conf. (40%<P<90%) associations

53° Congresso SAlt - Pisa 2009

- o 205 sources with significance > 10σ (EGRET found fewer than 30).
- o Typical 95% CL error radius is <10 arcmin. \sim 1/3 show variability.

stefano.ciprini@pg.infn.it

53° Congresso SAlt - Pisa 2009

Blazar population properties

- Aug/Sep/Oct high confidence list: 205 sources with >10 σ detection
- 132 with |b| > 10° (7 pulsars, 14 unid)
 - 111/125 are bright, flat spectrum radio sources
 - 98/111 have optical classifications, 89/111 have redshifts
 - CRATES (all-sky radio catalog), CGRaBS (all-sky optical spectra)

stefano.ciprini@pg.infn.it

Blazar population properties

Blazar population properties

Photon index vs flux

Luminosity vs redshift

Luminosity functions

FSRQs

- □ Strong evolution
- The 3 month LAT AGN sample measures the bright end of the luminosity distribution.
- BL Lac objects
 No evidence of evolution
- Combined emission from individual blazars in 3 month sample corresponds to 7% of EGRET extragalactic diffuse

Publicly LAT monitored source list

Source Name	3EG Flux	Source Name	3EG Flux
	$(10^{-8} \rm cm^{-2} \rm s^{-1})$		$(10^{-8} \mathrm{cm}^{-2} \mathrm{s}^{-1})$
0208 - 512	85.5 ± 4.5	H 1426+428 [†] ?	
0235 + 164	65.1 ± 8.8	1510 - 089	18.0 ± 3.8
PKS $0528 + 134$	93.5 ± 3.6	PKS 1622–297	47.4 ± 3.7
PKS 0716+714	17.8 ± 2.0	1633 + 383	58.4 ± 5.2
0827 + 243	24.9 ± 3.9	$\rm Mrk~501^\dagger$	
OJ 287	10.6 ± 3.0	1730 - 130	36.1 ± 3.4
$\rm Mrk~421^\dagger$	13.9 ± 1.8	$1 \text{ES} \ 1959 + 650^{\dagger}$?	
W Comae ?	11.5 ± 1.8	$\rm PKS~2155{-}304^\dagger$	13.2 ± 3.2
3C 273	15.4 ± 1.8	BL Lacertae ^{\dagger}	39.9 ± 11.6
3C 279	74.2 ± 2.8	3C 454.3	53.7 ± 4.0
1406 - 076	27.4 ± 2.8	$1 \text{ES} \ 2344 + 514^{\dagger}$?	
LSI+61 303^{\dagger}	69.3 ± 6.1		

(?) Awaiting definitive detection by LAT.

LAT source monitoring activities

- Automated Science Processing (ASP)
 - Transient detection: Uses source detection (pgwave) to find all point sources in data from each epoch (6hr, day, week)
 - Follow-up monitoring: Runs full likelihood analysis on list from source detection step + "Data Release Plan" (DRP) sources
 - 2×10^{-6} ph cm⁻² s⁻¹ threshold (daily) for public release of non-DRP
- Flare Advocates: ٠
 - LAT scientists from Galactic and Extragalactic groups examine output from ASP _ pipeline and perform follow-up analyses, produce ATels, and propose ToOs

LAT Astronomer's Telegrams

date	number	title
2009-04-26	2033	Fermi LAT detection of gamma-ray re- brightening of blazar PKS1510-089
2009-04-21	2026	Fermi LAT detection of a GeV flare from blazar B2 1520+31
2009-04-17	2021	Fermi LAT detection of increasing gamma- ray activity of blazar PKS 1222+216
2009-03-27	<u>1991</u>	Swift-XRT follow-up of FSRQ GB6 J1700+6830
2009-03-27	<u>1989</u>	Fermi LAT detection of a GeV flare from PMN J2250-2806
2009-03-23	<u>1986</u>	Fermi LAT detection of a possible new gamma-ray blazar: GB6 J1700+6830
2009-02-25	<u>1943</u>	Swift XRT/UVOT follow-up of blazar PKS 1118-056 after a gamma-ray flare
2009-02-19	<u>1933</u>	Fermi LAT detection of Increased Flux from new gamma-ray blazar PKS 0250-225
2009-02-18	<u>1932</u>	Fermi LAT detection of a GeV flare from new gamma-ray blazar PKS 1118-056
2009-01-29	<u>1919</u>	Fermi-LAT detection of increased gamma-ray activity from the blazar PKS 0727-115
2009-01-22	<u>1905</u>	Fermi-LAT detection of renewed activity from the blazar PKS 1502+106
2009-01-19	<u>1902</u>	Fermi LAT detection of a high gamma-ray state from high-redshift blazar 0917+449
2009-01-12	<u>1898</u>	Fermi LAT detection of increasing gamma- ray activity of blazar PKS 0454-234
2009-01-09	<u>1897</u>	Fermi-LAT detection of another rapid GeV flare from the blazar PKS 1510-089
2009-01-08	<u>1894</u>	Fermi-LAT detection of a GeV flare from a source positionally consistent with PKS 1244-255

date	number	title	
2009-01-04	<u>1888</u>	Fermi-LAT and Swift detection of a large GeV and optical flare from J123939+044409	
2008-12-17	<u>1877</u>	Fermi LAT detection of a gamma-ray source positionally consistent with QSO B0133+47	
2008-12-06	<u>1864</u>	Fermi LAT detections of increasing gamma ray activity of blazar 3C 279	
2008-11-21	<u>1850</u>	Fermi LAT Observations of the Cygnus Region	
2008-10-17	<u>1788</u>	Fermi LAT Detection of a New Gamma-ray Transient in the Galactic Plane: J0910-5041	
2008-10-15	<u>1784</u>	Fermi/LAT detection of strong activity on short timescales of the blazar AO 0235+164	
2008-10-08	<u>1771</u>	Fermi LAT Detection of Brightening of the Galactic Plane Source 3EG J0903-3531	
2008-10-03	<u>1759</u>	Fermi LAT detections of gamma ray activity in three blazars: 3C 66A, PKS 0208-512, PKS 0537-441	
2008-09-26	<u>1744</u>	Fermi LAT strong detection of blazar AO 0235+164 during outburst at Optical-to-Radio Wavelengths	
2008-09-26	<u>1743</u>	Fermi LAT observations of the PKS 1510-089 outburst	
2008-09-08	<u>1707</u>	Fermi LAT detection of 3C 273 in flaring state	
2008-09-05	<u>1701</u>	Fermi LAT detection of a possible new gamma-ray flaring blazar: PKS 1454-354	
2008-08-08	<u>1650</u>	GLAST LAT detection of a possible new gamma-ray flaring blazar: PKS 1502+106	
2008-07-24	<u>1628</u>	GLAST-LAT detection of extraordinary gamma-ray activity in 3C 454.3	

Fermi results for individual AGNs

53° Congresso SAlt - Pisa 2009 Pisa, Italy, May 4-8, 2009

Fast flaring blazars: PKS 1454-354 and PKS 1502+106

- PKS 1454-354: factor ~5 increase of >100 MeV flux in 12 hours; achromatic flux variations
- ❑ ⇒ weak radiative cooling regime, GeV variability driven by seed photon changes (cf. PKS 2155–304)

■ PKS 1502+106: z=1.839, factor 3 increase in <12 hrs, highest ∆L/∆t in GeV band. Relevant varibaility and multifrequency campaign developed (see the dedicated poster).

Fermi-LAT detection of NGC 1275 (Per A, 3C 84)

- NGC 1275: Classic example of a "cooling core" cluster. Voids or "bubble" seen in the X-ray must be inflated by some central source of power, i.e., an AGN.
- ❑ Variable emission on month to year time scales ⇒ AGN. Cannot be dark matter or diffuse cluster emission.
- □ Inferred blazar luminosity, $L_{\gamma} \sim 10^{44} 10^{45}$ erg s⁻¹, is consistent with power needed to inflate the voids.
- SED fitted with single zone SSC model (solid curve) and spine-sheath model (dashed)

stefano.ciprini@pg.infn.it

LAT detection of PMN J0948+0022 (a narrow Line Space Telescope Seyfert 1) and very large outburst from 3C 454.3

PMN J0948+0022

- Seyfert galaxies are not normally associated with blazar emission
- PMN J0948+0022 SED is similar to an FSRQ's, but at much lower luminosity.
- □ Seyfert galaxies have lower mass BHs ($\sim 10^7 M_{sun}$) & NS1s have high accretion rates \Rightarrow Eddington ratio is a key determinant of SED characteristics.

3C 454.3

- OVV quasar, very active since 2000; z = 0.859; VLBI, superluminal motion, $\delta \sim 25$
- Brightest blazar during first few months of operations and variability time scales of < 3 days $\Rightarrow \delta > 6$
- □ First definitive evidence of a spectral break in the GeV range: $E_{br} = 2 \text{ GeV}, \Gamma_1 = 2.3, \Gamma_2 = 3.5$
- $\Box \quad \Delta \Gamma = 1.2 > 0.5 \implies \text{not from radiative cooling.}$
- This feature could either arise from "intrinsic" absorption, e.g., via γγ opacity from accretion disk photons or it may represent a characteristic energy in the underlying particle distribution.

PKS 2155-304: the Fermi-HESS MW campaign (Fermi, HESS, ATOM, RXTE (+ Swift)

- X-ray and VHE fluxes are not correlated, in contrast to July 2006 flare
- □ Lack of spectral variability in HESS band ($\Delta\Gamma_{VHE}$ < 0.2) → weak radiative cooling regime
- □ Signifcant spectral variability in X-rays ($\Delta\Gamma_X \sim 0.5$) → strong cooling regime
 - □ \Rightarrow Electrons producing the X-rays have higher energies than those producing the TeV.
- Optical and VHE fluxes are correlated
 Optical is driving the TeV variability
- □ Lack of opt-GeV correlation
- □ X-ray flux and HE photon index are correlated
- □ Multizone SSC models are required.

Conclusions

- The LAT is performing spectacularly well, both operationally and scientifically.
- Current set of results are just the tip of the iceberg.
- □ AGN/blazars field is among the main and fruitful science topic for the mission.
- Several Fermi multiwavelength campaigns on blazars have been completed and others are on-going
- The optimal high energy synergy between Fermi and Swift and between Fermi and TeV telescopes already demonstrated.

