Non-Gaussianity in CMB map seen through Needlets

WMAP 5-year Temperature Data Analysis

Davide Pietrobon

University of Tor Vergata - Rome Institute of Cosmology and Gravitation - Portsmouth

53° Congresso SAIt - Pisa 2009

Davide Pietrobon Beyond the standard model University of Tor Vergata - ICG

Outline

- 2 Techniques
 - Maths
 - 3D Graphs

3 Non-Gaussianity in the WMAP5 Data

- Large Scale Anomalous Features
- Limits on $f_{\rm NL}$

Non-Gaussianity in the WMAP5 Data

Λ CDM - The Cosmological Concordance Model

- One field inflation: nearly scale invariant perturbations;
- Dark Matter: perturbation growth and structure formation;
- Cosmological constant: late time acceleration of the Universe;
- Basic 6 parameters ΛCDM model.
- CMB thermal relic of the Big Bang
- Current constraints from CMB surveys (WMAP,BOOMERanG,CBI,ACBAR), Large Scale Surveys (2dF,NVSS,SDSS), SNe, HST
- Future: Planck, CMBpol, BOSS...

Sar

Davide Pietrobon

Beyond the Simplest Cosmological Model

- Signature of non-standard inflation models (multifield inflation, ekpyrotic or cyclic scenarios...):
 - Deviation from Gaussian perturbations: large $f_{\rm NL}$,
 - Gravitational waves,
 - Polarization B-modes;
- Dark energy as a possible explanation of the late time evolution of the Universe:
 - Evolving scalar field;
 - Equation of state parameter;
 - Speed of sound.

• Technique: Spherical Needlets

• Foregrounds subtraction: needlets ILC (Fay et al. 2008), point sources, polarization

Introduction

Techniques OO	

• 3D Graphs

Non-Gaussianity in the WMAP5 Data
 Large Scale Anomalous Features
 Limits on f_{NL}

4 Conclusions

Davide Pietrobon Beyond the standard model University of Tor Vergata - ICG

Non-Gaussianity in the WMAP5 Data

Spherical Needlets Marinucci et al. MNRAS 838 (2008) 539-545

Pixel space: temperature map

Dealing with masks, foregrounds and noise

$$T(\gamma) = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\gamma) \qquad \gamma \longleftrightarrow \mathbf{k} - \text{pixel}$$

Cosmological parameter estimation

イロト イポト イヨト イヨト

Needlets in pixel space.

- Peculiar combination of spherical harmonics: T(γ̂) = Σ_{i,k} β_{ik}ψ_{ik}(γ̂)
- Expansion coefficients: $\beta_{jk} = \sqrt{\lambda_{jk}} \sum_{\ell} b\left(\frac{\ell}{B^{j}}\right) \sum_{m} a_{\ell m} Y_{\ell m}(\xi_{jk})$ • $\sum_{j} \beta_{j} = \sum_{\ell} \frac{2\ell + 1}{4\pi} C_{\ell}; \quad \beta_{j} = \langle \sum_{k} \beta_{ik}^{2} \rangle$

 $b(\ell/B^j)$ filter function in multipole domain. B = 1.8, j = 3, 4, 5.

・ロト ・四ト ・ヨト ・ヨト

- Small overlap between filters in *l*-space;
- Easy to encode (Healpix based).

Techniques

Non-Gaussianity in the WMAP5 Data

3D Graphs

Spherical Needlets Marinucci et al. MNRAS 838 (2008) 539-545

Credit:Wiaux et al. 0712.3519

University of Tor Vergata - ICG

Davide Pietrobor

	Non-Gaussianity in the WMAP5 Data	
	• 0000 00000	

- 3D Graphs
- Non-Gaussianity in the WMAP5 Data
 Large Scale Anomalous Features
 Limits on f_{NL}

|□ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 - ∽ � €

Davide Pietrobon Beyond the standard model University of Tor Vergata - ICG

 Techniques
 Non-Gaussianity in the WMAP5 Data

 00
 0●000000000

Large Scale Anomalous Features

Anisotropic Features in WMAP 5-year Data Pietrobon et al. Phys. Rev. D.78 (2008) 103504

- Needlet analysis of CMB temperature map looking for anisotropic features: cold and hot spots
- B = 1.8 set applied to WMAP 5-year + Kq75 mask;

WMAP 5-year ILC temperature map.

WMAP 5-year broad mask: Kq75.

Beyond the standard model	

Techniques

Non-Gaussianity in the WMAP5 Data

Conclusions

Large Scale Anomalous Features

Anisotropic Features in WMAP 5-year Data Pietrobon et al. Phys. Rev. D.78 (2008) 103504

We found three significant large scale structures at ℓ 10 to 20.

Two hot spots.

Spots detected.

University of Tor Vergata - ICG

		Non-Gaussianity in the WMAP5 Data	
Large Scale Anomalous Features			
Angular Power	Spectrum estin	nate: N vs. S	

Pietrobon et al. Phys. Rev. D.78 (2008) 103504

CMB power spectrum in needlet space up to $\ell \sim 200 \ \beta_j = \sum_k \beta_{jk}^2 / N_{\text{pix}}$

Whole sky power spectrum.

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 → ��(

					Non-Gaussianity in the WMAP5 Data			
Large Sc	ale Anomalo	us Features						
		-	a	•			a	

Angular Power Spectrum estimate: N vs. S Pietrobon et al. Phys. Rev. D.78 (2008) 103504

CMB power spectrum in needlet space up to $\ell \sim 200 \ \beta_j = \sum_k \beta_{jk}^2 / N_{\text{pix}}$

Significant difference between the power spectrum computed in the two hemispheres. (Hansen et al. (2008))

	Non-Gaussianity in the WMAP5 Data	
Large Scale Anomalous Features		

Angular Power Spectrum estimate: N vs. S Pietrobon et al. Phys. Rev. D.78 (2008) 103504

CMB power spectrum in needlet space up to $\ell \sim 200 \ \beta_j = \sum_k \beta_{jk}^2 / N_{\text{pix}}$

The asymmetry decreases by a factor 2 when spots are removed a = b + a = b + a = b + a

Davide Pietrobon Beyond the standard model Conclusions

Large Scale Anomalous Features

Cosmological parameter implication Pietrobon et al. Phys. Rev. D.78 (2008) 103504

• How do the spots affect the cosmological parameter estimation?

- The effect on the whole sky angular power spectrum exceeds the cosmic variance at one/two sigma in few multipoles
- We could expect a change of few 10^{-3} on A_s , τ , n_s

rechniques

Non-Gaussianity in the WMAP5 Data

Conclusions

Large Scale Anomalous Features

Cosmological parameter implication Pietrobon et al. Phys. Rev. D.78 (2008) 103504

- How do the spots affect the cosmological parameter estimation?
- The effect on the whole sky angular power spectrum exceeds the cosmic variance at one/two sigma in few multipoles
- We could expect a change of few 10^{-3} on A_s , τ , n_s
- We ran MCMC but no significant changes were found
 - Cosmic variance;
 - degeneracy among parameters.

イロト イポト イヨト イヨト

	Non-Gaussianity in the WMAP5 Data	
	000000000	
Limits on f _{NL}		

• 3D Graphs

Non-Gaussianity in the WMAP5 Data Large Scale Anomalous Features

• Limits on $f_{\rm NL}$

4 Conclusions

・ロト・西ト・ヨト・ヨー めんの

Davide Pietrobon Beyond the standard model

Limits on fNI.

Limits on $f_{\rm NL}$ from WMAP 5-year Data Pietrobon et al. arXiv:astro-ph/0812.2478 (2008)

• Primordial non-Gaussianity due to second order effect:

$$\Phi(\mathbf{x}) = \phi_G(\mathbf{x}) + f_{\rm NL}[\phi_G^2(\mathbf{x}) - \langle \phi_G^2 \rangle]$$

- Claim of detection at 2.5 sigma level by Yadav & Wandelt in WMAP 3-year data (Phys.Rev.Lett.100:181301,2008);
 *f*_{NL} ~ 80 → non-standard early universe models (ekpyrotic, cyclic);
- Slightly lower confidence level in Komatsu et al. (2008) with WMAP 5-year data;

Fast cubic estimator	bispectrum based	$\delta f_{\rm NL} \sim \pm 60$ at 95% c.l.
KSW		
Wavelets	"binned" bispectrum	$\delta f_{\rm NL} \sim \pm 60$ at 95% c.l.
Curto et al.		
N-pdf	bayesian analysis	$\delta f_{\rm NL} \sim \pm 124$ at 95% c.l.
Vielva & Sanz		

イロト 不得 トイヨト イヨト

l'echniques

Non-Gaussianity in the WMAP5 Data

Conclusions

Limits on f_{NL}

Effect of f_{NL} on CMB sky $f_{NL} = 0$

Credit: M. Liguori et al.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

University of Tor Vergata - ICG

Davide Pietrobon

l'echniques

Non-Gaussianity in the WMAP5 Data

Conclusions

Limits on f_{NL}

Effect of $f_{\rm NL}$ on CMB sky $f_{\rm NL} = 10$

Credit: M. Liguori et al.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

University of Tor Vergata - ICG

Davide Pietrobon

l'echniques

Non-Gaussianity in the WMAP5 Data

Conclusions

Limits on f_{NL}

Effect of $f_{\rm NL}$ on CMB sky $f_{\rm NL} = 100$

Credit: M. Liguori et al.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

University of Tor Vergata - ICG

Davide Pietrobon

echniques

Non-Gaussianity in the WMAP5 Data

Conclusions

Limits on f_{NL}

Effect of $f_{\rm NL}$ on CMB sky $f_{\rm NL} = 500$

Credit: M. Liguori et al.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

University of Tor Vergata - ICG

Duride Fieldoon

Introduction Techniques Non-Gaussianity in the WMAP5 Data Conclusions

Limits on f_{NL}

Procedure Applied to the Data

Pietrobon et al. arXiv:astro-ph/0812.2478 (2008)

- Noise weighted combination of all channels: Q, V and W foregrounds reduced
- Extract needlet coefficients β_{jk}
- Compute the skewness

$$S_j = \frac{1}{\tilde{N_p}} \sum_{k'} \frac{(\beta_{jk'} - \langle \beta_{jk'} \rangle)^3}{\sigma_j^3}$$

・ロト・西ト・ヨト・ヨー めんの

Davide Pietrobon

Limits on f_{NL}

Procedure Applied to the Data

Pietrobon et al. arXiv:astro-ph/0812.2478 (2008)

- Noise weighted combination of all channels: Q, V and W foregrounds reduced
- Extract needlet coefficients β_{jk}
- Compute the skewness

$$S_j = rac{1}{ ilde{N}_p} \sum_{k'} rac{(eta_{jk'} - \langle eta_{jk'}
angle)^3}{\sigma_j^3}$$

- Apply the same procedure to:
 - non-Gaussian simulations in order to find the best fit for f_{NL}
 - Gaussian simulations to estimate covariance matrix (valid for small f_{NL})

イロト イポト イヨト イヨト

Limits on f_{NL}

Procedure Applied to the Data

Pietrobon et al. arXiv:astro-ph/0812.2478 (2008)

- Noise weighted combination of all channels: Q, V and W foregrounds reduced
- Extract needlet coefficients β_{jk}
- Compute the skewness

$$S_j = \frac{1}{\tilde{N_p}} \sum_{k'} \frac{(\beta_{jk'} - \langle \beta_{jk'} \rangle)^3}{\sigma_j^3}$$

- Apply the same procedure to:
 - non-Gaussian simulations in order to find the best fit for f_{NL}
 - Gaussian simulations to estimate covariance matrix (valid for small $f_{\rm NL}$)
- We combined several sets of needlets in order to span as homogeneously as possible the multipole range.

		Non-Gaussianity in the WMAP5 Data	
		0000000000	
Limits on f _{NL}			
Constraint	s on $f_{\rm NL}$		
Pietrobon et al. arX	Kiv:astro-ph/0812.2478 (20	08)	

Skewness of the needlet coefficients

Davide Pietrobon

		Non-Gaussianity in the WMAP5 Data ○○○○○○○○○●	
Limits on f _{NL}			
Constraints	s on $f_{\rm NI}$		

Pietrobon et al. arXiv:astro-ph/0812.2478 (2008)

• χ^2 statistics

$$\chi^2(f_{NL}) = (X^d - \langle X(f_{NL}) \rangle)^T \mathbf{C}^{-1} (X^d - \langle X(f_{NL}) \rangle)$$

$$f_{\rm NL} = 30$$

-50 < $f_{\rm NL}$ < 110 at 95% c.l.

WMAP 5-year measured χ^2 .

▲□▶▲@▶▲≧▶▲≧▶ ≧ 少�?

University of Tor Vergata - ICG

		Non-Gaussianity in the WMAP5 Data ○○○○○○○○●	
a	C		

Constraints on f_{NL} Pietrobon et al. arXiv:astro-ph/0812.2478 (2008)

• χ^2 statistics $\chi^2(f_{NL}) = (X^d - \langle X(f_{NL}) \rangle)^T \mathbf{C}^{-1} (X^d - \langle X(f_{NL}) \rangle)$ $f_{NL} = 30$ $-50 < f_{NL} < 110$ at 95% c.l.

WMAP 5-year measured χ^2 .

• $f_{\rm NL}$ skewness based estimator

$$\begin{split} S_{j}^{\text{obs}} &= f_{\text{NL}} S_{j}^{\text{th}} |_{f_{\text{NL}} = 1} \\ f_{\text{NL}} &= \frac{\sum_{jj'} S_{j}^{\text{obs}} \text{C}_{jj'}^{-1} \text{S}_{j'}^{\text{th}}}{\sum_{jj'} S_{j}^{\text{th}} \text{C}_{jj'}^{-1} S_{j'}^{\text{th}}} \end{split}$$

$$f_{\rm NL} = 32 \pm 90$$
 at 95% c.l.

Skewness template for $f_{NL} = 1$.

Davide Pietrobon

	Conclusions

- Non-Gaussian signature in the WMAP 5-year temperature map:
 - identified anomalous large scale features;
 - masking them reduces the North-South by a factor 2;
 - cosmological parameters are unchanged;
- constraints on the $f_{\rm NL}$ parameter:
 - promising limits: $-50 < f_{\rm NL} < 110$ at 95% CL;
 - χ^2 -statistics and $f_{\rm NL}$ skewness estimator applied.
- Application of needlets to the Planck reference sky.
- Is there any foregrounds contamination? arXiv:astro-ph/0901.2572 $-4 < f_{\rm NL} < 80.95\%$ c.l.

	Cond

Minimal Concordance Cosmological Model Parameters WMAP5 + SNe + BAO

$\Omega_b h^2$	$= 0.02267 \pm 0.00059$
$\Omega_c h^2$	$= 0.1131 \pm 0.0034$
Ω_{Λ}	$= 0.726 \pm 0.015$
n_s	$= 0.960 \pm 0.013$
$\Delta^2_{\mathcal{R}}$	$= (2.445 \pm 0.096) \times 10^{-9}$
au	$= 0.084 \pm 0.016$
H_0	$70.5 \pm 1.3 km s^{-1}$
Ω_b	0.0456 ± 0.0015
Ω_c	0.228 ± 0.013

CMB Spectra

イロト 不得 トイヨト イヨト

lusions

Davide Pietrobon

Parameters and CMB Power Spectrum

Davide Pietrobon

Beyond the standard model

University of Tor Vergata - ICG

< • • • • •

Parameters and CMB Power Spectrum

Davide Pietrobon

Beyond the standard model

University of Tor Vergata - ICG

Parameters and CMB Power Spectrum

Davide Pietrobon

Beyond the standard model

University of Tor Vergata - ICG

	Non-Gaussianity in the WMAP5 Data

	Non-Gaussianity in the WMAP5 Data

< • • • • •

Parameters and CMB Power Spectrum

Parameters and CMB Power Spectrum

Davide Pietrobon

University of Tor Vergata - ICG

