Pre-Main Sequence models
Tognelli, Prada Moroni, Degl'Innocenti
2011, Astronomy & Astrophysics, 533, A109
The database grid
Pre-MS evolutionary tracks are available for:
-
19
values of metallicity in the range Z= 0.0002
- 0.03
-
3 values of the initial helium abundance (Y) for each Z
-
3 values of the mixing-length parameter (α= 1.20, 1.68
and 1.90) for each chemical composition
-
2 values of the initial deuterium
abundance (XD= 2 ·
10-5 and 4 ·
10-5) for models with Z > 0.007
-
43
stellar mass values in the range M= 0.2
-
7
Mo for each set of Z,Y, XD and α
We computed also the corresponding pre-MS isochrones for ages in the range 1-100 Myr.
The initial helium abundance of a model with metallicity Z follows from the
linear relation:
where Yp is the primordial helium abundance
(i.e. the result of the Big Bang
nucleosynthesis) and Δ Y/Δ Z the ratio which provides the
stellar nucleosynthesis enrichment.
We provide pre-MS models adopting:
-
Yp=0.2485,
Δ Y/Δ Z= 2 and 5
-
Yp=0.230,
Δ Y/Δ Z= 2
corresponding to the following values of [Fe/H]:
|
Yp = 0.2485 |
Yp = 0.230 |
|
ΔY/ΔZ=2 |
ΔY/ΔZ=5 |
ΔY/ΔZ=2 |
Z |
[Fe/H] |
[Fe/H] |
[Fe/H] |
0.0002 |
-1.79 |
-1.79 |
-1.80 |
0.0010 |
-1.09 |
-1.09 |
-1.10 |
0.0020 |
-0.79 |
-0.79 |
-0.80 |
0.0030 |
-0.61 |
-0.61 |
-0.62 |
0.0040 |
-0.48 |
-0.48 |
-0.50 |
0.0050 |
-0.39 |
-0.38 |
-0.40 |
0.0060 |
-0.31 |
-0.29 |
-0.32 |
0.0070 |
-0.24 |
-0.22 |
-0.25 |
0.0080 |
-0.18 |
-0.16 |
-0.19 |
0.0090 |
-0.12 |
-0.11 |
-0.13 |
0.0100 |
-0.08 |
-0.06 |
-0.09 |
0.0125 |
0.03 |
0.05 |
0.01 |
0.0150 |
0.11 |
0.14 |
0.10 |
0.0175 |
0.18 |
0.21 |
0.17 |
0.0200 |
0.24 |
0.28 |
0.23 |
0.0225 |
0.30 |
0.34 |
0.29 |
0.0250 |
0.35 |
0.40 |
0.34 |
0.0275 |
0.40 |
0.45 |
0.38 |
0.0300 |
0.44 |
0.50 |
0.43 |
The evolution code
The structure and evolution of pre-MS models have been computed by means of the
latest version of FRANEC (Tognelli, Prada Moroni, Degl'Innocenti 2011; Valle et
al. 2009), a stellar evolution code based on the Henyey technique for solution
of the equations of stellar structure and evolution.
Convection
The Schwarzschild criterion is adopted to identify the convectively unstable
regions, where the mixing is assumed to be instantaneous. Concerning the
treatment of convective transport in superadiabatic zones, typical of the outer
stellar layers, the mixing length theory is followed (Bohm-Vitense 1958;
Cox & Giuli 1968).
In this framework the convective efficiency depends on the mixing length
l= α Hp,
where
Hp is the pressure height scale
and
α is a free parameter to be calibrated.
We calibrated the mixing length parameter with our Standard Solar Model
obtaining α= 1.68.
Diffusion
The diffusion of helium and heavy elements is taken into account. Diffusion
coefficients are computed following Thoul, Bahcall & Loeb (1994).
Boundary conditions
We use detailed model atmospheres as surface boundary conditions.
3000 K < Teff <
10000 K: Brott & Hauschildt (2005)
10000 K ≤ Teff <
50000 K: Castelli & Kurucz (2003)
Input physics
Equation of state (EOS)
We adopt the last version of
the
OPAL EOS (Rogers et
al. 1996; Rogers & Nayfonov 2002).
At low temperatures, the OPAL tables are extended by means
of
FreeEOS tables released in 2008 (Irwin 2004).
Opacity
We use the conductive opacity computed
by
Potekhin
(1999), Shternin & Yakovlev (2006)
The opacity have been computed for the recent solar mixture by Asplund et al. (2005).
Nuclear Network
The code take follows the burning of 26 elements. The reaction rates for
the light elements
(
D,
3He,
Li,
Be and
B)
and the hydrogen burning (
p-p chain and
CNO cycle) are taken
from the NACRE compilation (Angulo et al. 1999), with the exception of the
14N(p,γ)15O which is from the LUNA collaboration (Imbriani et al. 2005). The initial abundances
of
3He,
Li,
Be
and
B are from Geiss & Gloeckler (1998).
We computed pre-MS models for two different initial abundances of D.
XD= 4 ·
10-5
XD= 2 ·
10-5
References
Angulo C., et al. 1999, Nucl. Phys. A, 656, 3
Asplund M., Grevesse N., & Sauval A.J. 2005, in ASP Conf. Series,
Vol. 336, Cosmic abundances as records of stellar evolution and
nucleosynthesis, ed. T. G. Barnes, III & F. N. Bash, 25
Bohm-Vitense E. 1958, Zeitschrift fur Astrophysik, 46, 108
Brott, I. & Hauschildt, P.H. 2005, in ESA Special Publication,
Vol. 576, The three.Dimensional Universe with GAIA, ed. C. Turon,
K.S. O'Flaherty, & M.A.C. Perryman, 565
Castelli F., & Kurucz R.L. 2003, in IAU Symp., Vol. 210, Modelling of
Stellar Atmospheres, ed. N. Piskunov, W.W. Weiss, D.F. Gray, 20
Cox J.P., & Giuli R.T. 1968, Principles of stellar structures, New
York, Gordon and Breach
D'Antona F., & Montalban J. 2003, A&A, 412, 213
Ferguson J.W., Alexander D.R., Allard F., et al. 2005, ApJ, 623, 585
Geiss J, & Gloeckler G. 1998, Space Science Reviews, 84, 239
Imbriani G., Costantini H., Formicola A., et al. 2005, European Physical Journal A, 25, 455
Iglesias C.A., & Rogers F.J. 1996, ApJ, 464, 943
Irwin A.W. 2004, FreeEOS Documentation
Potekhin A.Y. 1999, A&A, 351, 787
Rogers F.J., & Nayfonov A. 2002, ApJ, 576, 1064
Rogers F.J., Swenson F.J., & Iglesias C.A. 1996, ApJ, 456, 902
Shternin P.S., & Yakovlev D.G. 2006, Phys. Rev. D, 74, 043004
Thoul A.A., Bahcall J.N. & Loeb A. 1994, ApJ, 421, 828
Tognelli E., Prada Moroni P.G., & Degl'Innocenti S. 2011, A&A,
533, A109
Valle G., Marconi M., Degl'Innocenti S., &Prada Moroni P.G. 2009,
A&A, 507, 1541
Ventura P., Zeppieri A., Mazzitelli I., &D'Antona F. 1998, A&A, 331,
1011
The Pisa Stellar Evolution Data Base for low mass stars
Dell'Omodarme, Valle, Degl'Innocenti, Prada Moroni
2012, Astronomy & Astrophysics, 540, A26
The low mass stars database contains two sets of tracks and isochrones.
The first grid allow initial helium abundance Y and
metallicity Z
to vary independently. This set was computed for:
-
19 values of metallicity Z in the range [0.0001 - 0.01]
-
5 values of the initial helium abundance Y for each Z
-
3 values of the mixing-length parameter (α= 1.70, 1.80
and 1.90) for each chemical composition
-
2 values of alpha-enhancement of the Solar mixture ([&alpha/Fe] = 0.0, 0.3)
-
17 stellar mass in the range [0.30, 1.10]
The second grid is computed assuming a linear relation between
Y and Z:
where Yp = 0.2485 is the primordial helium
abundance
and Δ Y/Δ Z the ratio which provides the
stellar nucleosynthesis enrichment.
For each pair (Y, Z) stellar tracks was computed for:
-
3 values of the mixing-length parameter (α= 1.70, 1.80
and 1.90) for each chemical composition
-
2 values of alpha-enhancement of the Solar mixture ([&alpha/Fe] = 0.0, 0.3)
-
17 stellar mass in the range [0.30, 1.10]
For each set of parameters we provide:
- Output of the calculations beginning from the PMS
and ending
either at the helium flash (for M = [0.30, 0.50] MO)
or at central hydrogen exhaustion (M = [0.55 - 1.10] MO).
- For each calculation reaching the helium flash in
less than 15 Gyr: output of the calculations
beginning from the Zero Age Horizontal Branch (ZAHB) model and
ending at the onset of thermal pulses.
-
ZAHB models, calculated in intervals of 0.01 MO.
ZAHB were computed to span a sizeable range of the ZAHB
effective temperature extension: from zero mass loss in RGB (ZAHB
mass equal to the progenitor mass) to a mass equal to the one of the He core
at RGB flash plus a small envelope of 0.026 MO.
- Isochrones computed in the
typical GC age range, from 8 to 15 Gyr, with time steps of
0.5 Gyr.
The evolution code
In this section we list only the changes with respect to the FRANEC version
used for computation of Pre-Main Sequence models described above.
Solar mixture
The Asplund et al. (2009) solar elements mixture were adopted in the
calculations.
The value of the mixing length parameter calibrated with our Standard Solar
Model is α = 1.74.
Nuclear Network
For the reaction
12C(α,γ)16O we adopted the expression given
by Hammer et al. (2005).
References
-
Asplund, M., Grevesse, N., Sauval, A.J., & Scott, P. 2009, ARA&A, 47,
481
-
Hammer, J.W., Fey, M., Kunz, R. et al. 2005, Nuclear Physics A, 758,
363